

BEAUNE 2002

FLAT PANEL X-RAY DETECTOR

Jean Chabbal ; Marc Arques ; Olivier Peyret

Troisième Conférence Internationale sur les « Nouveaux développements en photodétection »

Beaune, France, 17-21 Juin 2002

Part 1 Flat Panel X-Ray Detector

State of the art and limitations

- The replacement of the medical radiographic film has been the main driver, during the last decade for large area X-ray detectors development
- Several Flat Panel X-Ray detectors (FXD) are now available, all of them using Amorphous Silicon Technology, for digital radiography system
- FXD for dynamic imaging (30 fps) of the heart have been recently introduced

	General radiography	Mammography
Size	> 40 x 40 cm	>18 x 24 cm
Pixel size	~ 150 µm	60-100 μm
Typical nb of incid.X/pel	~1000	~5000
Corresponding dose	2.5 μGy	100µGy
Energy range	30-120 keV	~20 keV
Input equiv. noise	< 5 X quanta	< 5 X quanta
Dynamic range	12 bit	12 bit
Exposure / Readout time	.5 s / 1 s	1s / 5 s

- X-Ray converter : scintillator or photoconductor
- Active aSi:H readout matix
- External readout Amplifiers/multiplexers and lines drivers

X-Ray Conversion Direct / Indirect

Two designs are currently used

State of the art : Thallium doped Cesium Iodine (CsI) screen

- Vapour grown
- Tl doped for green emission
- Columnar structure
- Large area 43cm x 43 cm
- Thickness ~ 500 600μm
- X-ray Absorption : 80 % at 60keV

Indirect Conversion :CsI(Tl) + aSi:Photodiode

Advantages :

- High absorption of X-ray : 80% at 60keV (500µm)
- Resolution due to CsI needle like structure :
 - MTF~ 40% at 21p/mm (pixel 200µm)

Limitations :

- light scattering effect
- Fill factor limiting the minimum pixel size
 - 64% for 150 μm pixel size
 - 50% for 100µm pixel size
- Sensitivity :
 - 1100 electrons per X-Ray (DN 5)
- Memory effect following stronger exposure :
 - .1 % after few seconds

Direct Conversion

State of the art : amorphous Selenium photoconductor

-Large area 43cm x 43 cm
-Thickness ~ 500 - 1000μm
-Electric field ~10 V/μm
-X-ray Absorption : 52 % at 60keV

Direct Conversion : Amorphous Sélénium

Advantages :

- High resolution :
 - MTF~ 75 % at 2lp/mm (pixel 150 μm)
- Fill factor :
 - Almost 100% for 150 µm pixel
- Simpler readout matrix
 - No photodiode

Limitations :

- absorption of X-ray : 52% at 60keV (500µm)
- Sensitivity :
- 1000 charges per X-Ray (DN 5)
- Lag effect :
 - 2% after 33 ms

FXD READOUT ARCHITECTURES

- 2D array of aSi-TFT switchs adressed by line pulse
- Signal readout by column data bus and by external amplifier

LIMITATIONS :

• No pixel amplification

150 μm

- Readout noise (~ 1000 electrons) equivalent to signal at Fluoroscopic dose
- Scintillator detectors require specific process for photodiode

• The characteristics of commercial XFD are now approaching the maximum values provided by the present concept :

- Performances for General Radiography are better than film
- At very low dose used in fluoroscopy and interventional techniques the signal to noise ratio is still the limiting factor for both direct (Se) and indirect design (CsI:Tl)
- Cost of these detectors remains high

New architectures and new photoconductors materials are required to overcome the present limitations.

Part 2 Flat Panel X-Ray Detector

Future Developments

- To get a larger number of electrons per quantum X-Ray X-ray photoconduction is an attractive way :
 - Larger number of created charges
 - Spatial resolution is almost independent of thickness and MTF is very close to the theoritical pixel response
- What we need :
 - High absorption (Heavy materials)
 - Low charge pair energy
 - Good transport properties
 - Low dark current (blocking contacts ; high resistivity)
 - Good lag characteristics
 - Large area manufacturing process (40cm x 40 cm)
 - Low manufacturing cost : ~ 1000 € for a 40 cm x 40 cm layer

	Poly CdTe	Poly HgI2	Poly PbI2	Amorphous Selenium	Poly PbO
Atomic Number	48-52	80-53	82-53	34	82-8
Density	5.9	6.4	5.5	4.3	?
Energy band gap	1.5	2.1	2.3	2.2	
ev					
Charge Pair Energy	4.5	5.5	6.6	50	15
eV				(effective)	
Processing temperature	500	100	200	80	
°C				(Substrate)	

• Cadmium Telluride, Mercuric Iodide and lead Iodine are considered as the best candidates for large area X-rays detectors for Medical applications

CdTe & CdZnTe	HgI2	PbI2
• CEA LETI • SHIMADZU	• VARIAN/ RTRR • XEROX/ RMD	• XEROX/ RTRR

• Further investigations and improvements are required to obtain materials with the required characteristics in **very large area.**

CZT poly + TFT Shimadzu-Sharp (2001)

Matrix size : 512 * 512

Pixel pitch : 150 µm

Figure 1 Schematic cross-section of the flat-panel detector with CdZnTe film

- In present aSi:H Matrix design a single TFT is used as a switch to read out the pixel signal resulting in a signal equivalent to the noise generated by the matrix readout process.
- The incorporation of an amplification at pixel level will overcome this limitation.
- The low charge mobility of aSi:H materials is not suitable for such a design :

a new technology is required

Technologies for future readout matrix

Poly SI	C MOS
 Relatively high mobility 	• High mobility (crystal silicon)
 Low integration 	High integration
 – single pixel amplification 	– Pixel functionalities
•Very large area	– Matrix drivers
	– Pixel counting
	Relatively large area

CMOS 12 inches wafer : the future

FXD Direct conversion and CMOS readout

- CMOS allows the design of Digital Counters in individual pixel
- The counting mode will provide :
 - Better stability : temperature, gain
 - Digital information at pixel level : *insensitive to matrix readout noise*
 - Elimination of **memory effect and lag effect**
 - Spectral information : *multi-energy radiography*
- The two main limitations are :
 - Limitation of the **counting rate** at high dose exposure
 - power consumption

CONCLUSION : THE FOUR KEYS FOR FUTURE FXD

