Development of a 10-inch HPD with Integrated Readout Electronics

A. Braem, E. Chesi, C. Joram, J. Séguinot, P. Weilhammer
CERN

M. Giunta, N. Malakhov, A. Menzione, R. Pegna, A. Piccioli, F. Raffaeli
INFN Pisa

1. CLUE – an air shower Cherenkov experiment
2. The 5-inch Pad HPD
3. Development of a 10-inch HPD
4. Rb₂Te photocathode
5. Self triggering readout electronics
CLUE = Cherenkov Light Ultraviolet Experiment

Imaging Air Cerenkov Telescope with 9 detector units

Single unit
- F/1 Parabolic Mirror, 1.8 m Ø
- UV Detector in focal plane

\[N_{pe} \sim \int QE \cdot T_{quartz} \cdot T_{O2} \cdot dE \]
1 step back: The 5-inch Pad HPD

- Bialkali K_2CsSb cathode on UV extended borosilicate window (schott 8337)
- 114 mm active diameter
- Si sensor, 2048 channels, $1 \times 1 \text{ mm}^2$
- Integrated readout electronics (IDEAS VA2, VA-prime)
- Nominal operational voltage: 20 kV
- Fountain focusing optics
 - $D \sim 2.4$
 - \rightarrow segmentation on cathode
 - $2.4 \times 2.4 \text{ mm}^2$
- Originally developed for LHCb RICH detectors
- Since January 2000 continued as independent R&D project
Radial dependence of the quantum efficiency of HPD PC68 for $\lambda=230$, 290 and 350 nm. Non-uniformity ($\pm 10\%$) mainly due to reflections from Si and electrodes.

Peak QE in the range $25\pm 3\%$ is routinely reached!
Simon SIMION 7.0

20 kV, $\cos(\theta)$, 1.5 eV

Linear demagnification
$D = 2.60$

Cut pedestal noise at $n_\sigma = 4$

HPD 'proper' noise

Total noise

Electronics noise

Point spread function (on silicon) (mm)

Beaune 2002, C. Joram / CERN

Pedestal cut n_σ
HPD PC100

20 kV
VA' chip set
(350 ns shaping time)

<signal> = 23.13
\(\sigma = 2.74\)

\(E_0 = 1.5\) keV
LHCb beam test with aerogel radiator (May 2001)

Use Pad HPDs
PC84 / 85 / 86 / 87

See separate poster
(Tito Bellunato et al.)
The 10-inch HPD

Characteristics of the final version

- Rb$_2$Te cathode, 4-7 eV, “solar blind”
- Quartz or UV ext. borosilicate window
- Demagnification ca. 4
- Segmentation on cathode level ca. 4 x 4 mm2
- Integrated self triggering electronics

- Envelope originally designed and fabricated for the AQUARICH prototype experiment (T. Ypsilantis et al.)
HPD’s development and production at CERN

<table>
<thead>
<tr>
<th>Year</th>
<th>Model</th>
<th>Features</th>
</tr>
</thead>
</table>
| 1998 – 2001 | HPD 5” | - Optimised for RICH applications (LHCb)
- K$_2$CsSb photocathode
- UV extended window
- 2048 readout pads |
| 2001 - 2003 | HPD 10” | - Optimised for Cherenkov based air shower detectors
- UV extended (or quartz) window
- Rb$_2$Te photocathode |
Electron optical simulations
(SIMION 7.0)

U = -20 / -19.6 / -16. / -13.5 / -7 kV
Electron optical simulations (cont’d)

Linear demagnification up to R=120 mm

Electron distribution on silicon for point source at $x_{\text{cathode}} = y_{\text{cathode}} = 0$

- $<E_{\text{kin}}> = 1.5$ eV, $\cos(\theta)$ distributed emission
- $U_{\text{cathode}} = -20$ kV
- RMS $= 1.3$ mm
The Rb$_2$Te photocathode

Rb$_2$Te has similar characteristics than the well known ‘solar blind’ Cs$_2$Te cathode.

However, very important for our application: the response of Rb$_2$Te above 300 nm is ~10-100 times lower.

Resistivity of cathode is very high: $> 10^{10}$ O/Ω
Conductive under-coating required to allow for reasonable photocurrents and uniform cathode response.
Indium Tin Oxide (ITO) ⇔ Chromium as transparent conductive layers

Our standard layer:
- ITO film thickness : 3.2nm
- Vacuum evaporated + post oxidation in air at 300ºC for 8 hours
The Rb_2Te co-evaporation process

- Excellent vacuum after bake-out
 (160°C, tube at 300°C)
 $p \sim 5 \times 10^{-9}$ mbar
 $p_{\text{H}_2\text{O}} \sim 1 \times 10^{-9}$ mbar

- Tank + substrate at $T \sim 70^\circ$C

- Permanent monitoring of
 I_{photo}, all other essential
 parameters
 (p, T, I_{source})

- Start with
 evaporation of Rb only
 $\rightarrow I_{\text{photo}} \sim$ few pA

- Co-evaporate Rb and Te

- Stop when Q.E. (250 nm)
 reaches maximum
The HPD development plant

- Coat substrates up to ϕ 10”
- Adapted to UV–VIS PCs, from 200 to 800 nm
- Press mechanism for cold indium encapsulation (2.5 tons)
- Production capacity limited to ~ 1.5 HPD / week
Two HPDs produced

HPD PC99

Extrapolation to quartz window

Direct measurement

HPD PC101

QE (%), extrapolated to quartz window

Ref. Hamamatsu
Side discovery: Under-layer has strong influence on cathode growth.

Photocathode PC96

- Hemisphere with ITO
- Hemisphere without ITO

Half of HPD window coated with ITO (3 nm)

ITO no ITO

2 bialkali photocathodes with ITO
2 bialkali photocathode without ITO

ITO seems not work for K₂CsSb cathodes!
Set-up for holding and heating the 10” envelope during evaporation

All components machined in Pisa, most of them now finished.
Electronics: IDEAS VaTagp3 - a self triggering analogue chip

Existing chip:

\[\tau_{\text{slow peak}} = 3 \, \mu s \]
\[\tau_{\text{fast peak}} = 150 \, \text{ns} \]

noise \~ 350 \, \text{e}^- \, (\text{ENC})

Faster chip under design

\[\tau_{\text{slow peak}} = 1 \, \mu s, \]
\[\tau_{\text{fast peak}} = 35 \, \text{ns} \]

Sparse readout scheme allows readout rates > 100 kHz.
Summary and outlook

The 5-inch Pad HPD works up to specifications. Development practically finished.

The ingredients for the fabrication of a 10-inch solar-blind HPD are being developed

- Co-evaporation process \(\rightarrow\) Excellent \(\text{Rb}_2\text{Te} \) (ITO) photocathodes
- Two 5” HPD with \(\text{Rb2Te} \) cathodes (borosilicate window) produced and characterized
- Electron-optics of 10” tube studied
- Most of the mechanical components for the evaporation plant available

Time plan

- Still in 2002: First 10” HPD with bialkali cathode on glass window, VA-prime electronics
- Summer 2003: First 10” HPD with \(\text{Rb}_2\text{Te} \) cathode on quartz window, VaTagp electronics

In our spare time we dream of another nice gadget…
Development of a proximity focused HPD

- Optimized for medical applications
- K_2CsSb photocathode
- Flat Sapphire window
- Ceramic rectangular body
- Very high active area fraction