High Resolution Cross Strip Anodes for Photon Counting detectors

Oswald H.W. Siegmund, Anton S. Tremsin, Robert Abiad, J. Hull and John V. Vallerga
Space Sciences Laboratory
University of California
Berkeley, CA 94720
Cross Strip Anode Configuration

Cross strip readout is a multilayer anode with ~0.5mm period strip sets in orthogonal directions. This is comparable to cross delay line anodes, however without the delay line, Instead each strip is connected to an amplifier.

Cross strip is a multi-layer cross finger layout.
Fingers have ~0.5mm period on ceramic.
Charge spread over 5 strips per axis,
Event position derived from charge centroid.
Can encode multiple simultaneous events.
Fast event propagation (few ns).
Compact and robust (900°C).
High Resolution Cross Strip Anodes

Fingers have ~0.5mm period on ceramic.
Charge spread over 5 strips per axis
Lower strips are exposed 50%
Upper strips cover other 50%
Connect amps to each strip
Use ASIC multi amplifier chips
Cross Strip Anode Configuration

Initial 8 x 8 mm test XS anode
0.5mm period, all metal/ceramic
Onboard wire-bonded preamplifier chips.
External amp, digitization and software centroid

Cross Strip Scheme Characteristics
• Low MCP gain (few x 10^6)
• Resolutions <10µm FWHM
• Linear images (few µm nonlinearity)
• Compact & robust (900°C capable)
• Very fast signal propagation (~1ns)

Future potential advances
• Large formats >50mm possible
• Small, low power ASIC encoding
• High event rates (>1 MHz)
• Multiple simultaneous event capable

Photo of the 8 x 8mm test XS anode with its wire-bonded preamplifier chips.
Schematic of the cross strip anode position encoding electronics test-bed system. All signals amplified and digitized. Choose up to 12 bits per signal. Slow ADC’s (10µs per digitization) using standard lab electronics, but sufficient for evaluation tests and flexible to select & diagnose parameter dependence.

ICD-2 preamplifier (16 ch) chip design that is being used for the current tests on the XS. ~1500e- rms noise, <20ns output, 10mW/ch.
Initial Images with 12µm MCP Pair and Cross Strip Anode

2 x 2 mm area imaged by cross strip anode. 12µm pore MCP’s in a back to back pair with ~5 x 10⁶ gain. Shows MCP multi-fiber modulation, dead pores, pore misalignments, and Moire beat modulation between the MCP’s.
Image section of a 12µm pore MCP pair obtained at 5 x 10^6 gain with the XS anode.

An image histogram slice of the 12µm pore MCP image showing the significant level of modulation.
10µm MCP Detector Image Resolution

Image detail of a 10µm pore MCP pair obtained at 2 x 10^6 gain with the XS anode shows the defective MCP material.

Image histogram slice of the 10µm pore MCP image showing the significant level of modulation.
7µm MCP Detector Image Resolution

Histogram in X of the 7µm pore MCP image at 2 x 10^6 gain showing a few µm resolution.

Images of the 7µm pore MCP pair at 2 x 10^6 gain showing multifiber boundaries and misaligned pores.
7µm MCP Detector Image Resolution

Image section of a 7µm MCP pair taken with the XS anode at different values of the signal digitization accuracy showing that the resolution does not degrade until 9 bits is reached.
Encoding Electronics Development Scheme

High speed hardware electronics chain downstream electronics can be implemented in standard modules Overall processing speed should support >10MHz rates

15 in /5 out, second generation amplifier design
Integrated Cross Strip Anode Design

Anodes up to 32 x 32mm have been made
Signals are routed to anode backside by hermetic vias
Packaging can be compact with amp on anode backside
Anodes can be sealed to tube package with all electronics external

32mm x 32mm cross delay line

32mm x 32mm XS anode backside & proposed design showing fan-in, amp chip, & outputs
Small Pore and Silicon MCP Developments

Small pore MCP’s are now available (5 -6 µm)
- Better spatial resolution - Faster response times
- Tight PHD at low gain - Lower background
- Now available in >100 x 50mm formats

Silicon MCP’s
Silicon MCP’s are made by photo-lithographic methods
Photolithographic etch process - very uniform pore pattern
No multifiber boundaries and array distortions of glass MCP’s
Scalable to large substrate sizes (200mm) with small pores (5µm)
High temperature tolerance - CVD and “hot” processes OK
UHV compatible, low background (No radioactivity)
In collaboration with Nanosciences.

Silicon microchannel plates in test program
25mm diameter (75mm currently feasible)
40:1 L/D (>100:1 possible)
7µm pore size, hexagonal and square pore
~2° bias and 8°bias, resistances ~GΩ, to <100MΩ possible
Silicon MCP Performance Characteristics

- Many Si MCP’s of 25mm diameter with ~7µm pores have been tested
- The performance is improving as production is being refined.
- Gain, quantum detection efficiency and pulse height are now very similar to glass MCP’s
- Open area ratio is up to >75% for hexagonal pores
- The background rate is lower (0.02 events cm⁻² sec⁻¹) than normal or low background glass
- CVD/MBE deposition of high temperature cathodes possible (Diamond made & measured)

Gain evolution of single Si MCP’s

Si MCP background rate as a function of gain threshold.
Silicon MCP Performance Characteristics

Gain and response uniformity are reasonably good.

- We have tested the first stacks of Si MCP’s (4) with gain up to 10^6
- Scrubbing of Si MCP’s shows a tendency for the gain to increase!
- Si MCP’s lack of any periodic modulation in the flat field images but do show evidence of defects

Gain curve for a stack of 4 back to back Si MCP’s with 6µm pores and 40:1 L/D.

An image of the fixed pattern response to a Hg vapor lamp with a stack of 4 Si MCP’s. ~14mm area, 10^7 counts, ~50µm resolution XDL.
Cross Strip Readout Status Summary

- ~7µm pores are being resolved, <3µm electronic resolution
 3cm = 10k x 10k = 100 x 10^6 pixels!!!
 $1/pixel = $100 x 10^6 (ARISAKA!), will take $0.01/pixel, $10^6 bids!
- Image linearity is ~1µm level and shows pore misalignments
- Gain required is ~2 x 10^6, allows higher local event rates
- Lower gain means longer overall lifetime
- Packaging can be compact with amp on anode
- 32mm anode format implemented, test with Si MCP’s soon
 - **Development Plan**
 - Fabrication of amp/disc/sparse chips
 - Integrate downstream electronics into small package
 - Power requirement of ~2W for 30mm readout
 - High counting rates of 5MHz feasible
 - Develop 40mm+ anode formats