Parallel Ionization Multiplier (PIM): a new concept of gaseous detector for radiation detection improvement

PIM : a new concept of gaseous detector for radiation detection improvement

- Improvement of β detection :
 - Principle
 - Realization
 - Results

- First PIM results for application to other ionizing particles :
 - Gain measurement
 - Discharges rate for α particles
β particle detection: difficulties and goals

- β detection for biology with gaseous detectors
 - A4 total sensitive area with no dead zone (21 μscope slides)
 - 2D reconstruction with a resolution FWHM < 100 μm
 - Uncollimated source

- Middle to high range in gas at CNTP
 - \(L(^3\text{H}) \sim 600 \, \mu\text{m} \) in argon
 - \(L(^{14}\text{C}) \sim 2.4 \, \text{cm} \)

Amplify primary electrons directly in the contact of the emitter

Parallel Ionizing Multiplier Idea
PIM principle for uncollimated β particles detection

Multiplication stage

Diffusion stage

$E \sim 25\ kV/cm$

$E \sim 5\ kV/cm$

Segmented anode with pixels for 2D position measurement

Micromegas micromesh

β particles source

$300\ \mu m$

$4\ mm$

Multiplication in a microgap directly in contact with the source

Diffusion stage for 2 dimensional read-out with Gassiplex front-end electronics

Difficulty: mechanical definition of the microgap on A4 area?
PIM spacers

- New spacer to define multiplication stages
 - polyimide (kapton) mesh, laser-machined
 - thickness from 25 µm to 300 µm
 - minimum line width: 30 µm

Mechanical definition of multiplication stages everywhere inside a parallel plates detector

A patented technology
PIM prototype for β detection: mechanics

- **Active area**: 180 x 288 mm2

Top view
Bottom view

Approx 100 000 pixels at a 750 µm pitch
PIM prototype for β detection: pixel read-out

- Each pixel is connected to one read-out strip by micro-vias

- The PCB has two internals layers (X and Y layers)
- Each read-out strip connects 50 to 100 pixels to the same channel

Minimizes the # of electronics channels to read all the pixels
PIM prototype for β detection: results with ^{14}C

- Gas mixture: Ne+10% iC4H10
 - $E_1 = 21.7$ kV/cm
 - $E_2 = 4$ kV/cm
PIM prototype for β detection: results with ^{14}C

- Reconstruction efficiency $\sim 50\%$
- Resolution ~ 60 μm (FWHM)
PIM prototype for β detection: results with 3H

- Gas mixture: Ne+10% iC4H10
- $E_1 = 21.7$ kV/cm
- $E_2 = 4$ kV/cm

Reconstruction efficiency ~ 75%

Resolution ~ 50 μm (FWHM)
PIM prototype for β detection: conclusion

- **New β imaging approach**
 - Resolution $^3\text{H} \sim 50 \mu\text{m}$, efficiency $\sim 75\%$
 - Resolution $^{14}\text{C} \sim 60 \mu\text{m}$, efficiency $\sim 50\%$

- **First evidence of PIM potentiality**
 - Patent since Mars 2002

- **A starting point for other applications**
 - MiP’s detection
 - Photon detection
Detection’s principle with a PIM detector

- Gaseous detector similar to MICROMEGAS or GEM

- Detection in 3 steps:
 - energy-electron conversion
 - Electron multiplication
 - novel concept
 - metallic and insulating meshes sandwich
 - directly in contact
 - micro gaps
 - electron diffusion
 - adapted to the anode segmentation
PIM : Multiplication Gain measurement.

- 55Fe source :
 - conversion (5.9 keV = 170 primary electrons with Ne+10% iC$_4$H$_{10}$)
 - total charge measurement on the anode

Comparison of the measured gain for one amplification stage PIM versus two amplification stages PIM without diffusion stage.
PIM : Multiplication Gain with one stage.

Results comparable to Micromegas with a 500 LPI micro-mesh
PIM : Multiplication Gain with two stages.

$\text{Ne+10}\%i\text{C}_4\text{H}_{10}$

$\Delta V_1 = 190$ V

$G = G_{\text{max}} \sim 5 \times 10^5$

Energy resolution:

$\text{Ne+10}\%i\text{C}_4\text{H}_{10}$ $G = 300000$

FWHM = 18 %

High gain with two stages and good energy resolution
Discharges probability with α from 241Am source

- Geometry: 5 cm conversion gap to stop α emitted at the top of the detector
- Discharges per incident particles measurement as a function of the amplification gain for one or two multiplication stages

\[
\phi(\alpha) = 200 \text{ Hz}
\]

\[
P(\text{2 stages}) \sim \frac{P(\text{1 stage})}{1000}
\]

Improvement of the amplification process stability

Dominique Thers@subatech.in2p3.fr, Beaune 20/06/2002
Parallel Ionization Multiplier: first conclusions and perspectives

- \(\beta \) Imaging:
 - Good solution for high resolution and efficiency on a large sensitive area
 - Intrinsic resolution not yet reached

 tests with smaller sensitive areas in progress at SUBATECH

- General ionizing particles detection:
 - First results with radioactive sources very promising
 - Beam tests needed to validate the decrease of the discharge probability for hadrons and to measure spatial resolution

 hadron beam tests scheduled at CERN and GSI