Diamond UV photoconductive devices: high gain, high speed and solar-blind

Stephane Curat, Ellepo Ambemou and Richard B Jackman

Electronic Engineering & London Centre for Nanotechnology
University College London
Acknowledgements

Robert McKeag, Mike Whitfield, Stuart Lansley
Olivier Gaudin, Bhaswar Baral, Haitao Ye

UCL Diamond Group

Philippe GA Bergonzo
Useful discussions
CEA, Saclay, France
Properties of Diamond

- Hard, chemically resilient
- Wide band gap (5.5eV)
- High carrier mobilities
- Highest saturated carrier velocities
- Highest electric field breakdown strength
- Highest thermal conductivity
- Low dielectric constant
- High electron ionisation energy
- High atomic displacement energy
- Highest acoustic wave velocity
- Negative electron affinity

Ideal diamond is a device engineers dream!

Technology base immature

Real diamond far from ideal
Types of Diamond: Breakthrough - μ & ρ values
Photoconductive devices

External quantum efficiency

Ratio of the flow of electrons per second from the device to the rate of generation

Generation Recombination Trapping

\[G = \frac{\tau_c (\mu_e + \mu_h) V}{L^2} \]

Shallow traps enhance gain
Recombination centres decrease it

Long carrier lifetimes give poor response times
UV photodetectors

Photoconductive design

- Interdigitated structure
- Gold electrodes
- 25µm pitch
- Free standing CVD diamond
 (~100µm thick)

Many regions are pseudo single crystal
• As fabricated device responsive in the visible

• Treated device shows true ‘visible blindness’

• Sharp cut off at band edge (225nm)
Varying the grain size

Type III: 10-30µm grains
Type II: 20-40µm grains
Type I: 40-60µm grains

Identically treated devices

Differing film thicknesses, leading to variation in grain size
Gain level vs grain size

Type I: 40-60\(\mu m\) grains
Type III: 10-30\(\mu m\) grains

High levels of gain can be realised
Implies increased carrier lifetime in large grain material

Field strength 40- 4\times 10^4 V/cm
Device speed: 193nm laser pulse detection

- 15ns pulse
- 1T - SLOW
- 5T - FAST
- No pulse ‘build-up’

Can be used for MHz operation
Can ‘engineer’ speed as well
Diamond is considered radiation ‘hard’

BUT

Excimer laser Radiation (193nm) causes damage to detectors (fluence ~ 10mJcm^{-2})
Multiply treated devices

Five times Treated device

- As fast as VPD
- Not degraded by 10^7 pulses
- Priming effect
Effect on device dark current

Singly treated devices show a considerable increase.

Multiply treated devices do not!
Imaging arrays - do they work?

150µm pixels

Suitable for beam tracking and profiling of expanded beams

Higher resolution devices under test
Imaging arrays - yes, they do!

![Graph showing voltage (V) versus time (s) for 9V 0.1mJcm-2]
Imaging arrays - excellent uniformity

Single Pulse on elements 6 & 7
Fluence ~1mJcm$^{-2}$

Voltage (V)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
Response of Vacuum Photodiode
to F_2 Laser Radiation

157nm - detector needed by semiconductor industry
Temporal Response of Diamond Detector to F₂ Laser Radiation

Diamond detectors a good 157nm solution
Imaging Performance at 157nm

Isolated and 1:1 lines

Photoresist: 60nm thick Shipley XP-98248-S optimized for use at 248nm
What have we achieved?

The application of post-growth treatments have enabled us to ‘engineer’ the properties of the devices:

- Spectral characteristics
- Speed
- Gain
- Radiation hardness
- Dark current

Changes are very stable.
Concluding Remarks

- Relatively low cost free-standing CVD grown polycrystalline diamond can be engineered to produce highly effective deep UV detectors

 Current price of 50mm diamond wafer ~$2000 (sufficient for ~100 3x3mm devices)

- Gem market is causing new sources of single crystal material to emerge

 May enable even higher performance levels at realistic cost