Electronics for photodetectors

BEAUNE 2005

C. de LA TAILLE
LAL Orsay
Taille@lal.in2p3.fr
http://www.lal.in2p3.fr/
Contents

- Overview of readout electronics
- Charge preamplifiers
- Noise
- Analog shaping
- ADCs
- Analog memories
- Digital signal processing
- (R)evolution(s) of analog and digital electronics
- Evolution of technologies
- Evolution of ASICs in particle physics
- Examples of designs

Thanks to: Eric Delagnes, Richard Hermel, Pierre Jarron, Jacques Lecoq, Gisèle Martin, Joel Pouthas, Veljko Radeka, Nathalie Seguin, Jean-Charles Vanel
Overview of readout electronics

- Most front-ends follow a similar architecture

Very small signals (fC) -> need amplification
- Measurement of amplitude and/or time (ADCs, discris, TDCs)
- Thousands to millions of channels
Readout electronics: requirements

- Low noise
- Low power
- High speed
- High reliability
- Radiation hardness
- Low material
- Low cost!
 (and even less)
- Radiation hardness
- High reliability
- Low power
Photodetector(s)

- A large variety, but a similar modelization
Detector modelization

- **Detector** = capacitance C_d
 - Pixels: 0.1-10 pF
 - PMs: 3-30 pF
 - Ionization chambers: 10-1000 pF
 - **Capa or transmission line?**

- **Signal**: current source
 - Pixels: $\sim 100e-/\mu m$
 - PMs: 1 photoelectron $\rightarrow 10^5-10^7$ e-
 - Modelized as an impulse (Dirac): $i(t)=Q_0\delta(t)$

- **Missing**:
 - High Voltage bias
 - Connections, grounding
 - Neighbours
 - Calibration...

[Diagram of detector modelization]
Reading the signal

- **Signal**
 - Signal = current source
 - Detector = capacitance C_d
 - Quantity to measure
 - Charge => integrator needed
 - Time => discriminator + TDC

- **Integrating on C_d**
 - Simple : $V = \frac{Q}{C_d}$
 - «Gain» : $1/C_d$: 1 pF -> 10 mV/fC
 - Need a follower to buffer the voltage...
 - Input follower capacitance : $C_a // C_d$
 - Gain loss, possible non-linearities
 - crosstalk
 - Need to empty C_d...

Impulse response
Monolithic active pixels

Epitaxial layer forms sensitive volume (2-20 µm)

Charge collection by diffusion

Charge collected by N-well

Vreset Vdd

Out

Select Reset

MAPS readout

Column-parallel ADCs

Data processing / Output stage

Readout control

I2C control

© R Turchetta RAL
Ideal charge preamplifier

- **ideal opamp in transimpedance**
 - Shunt-shunt feedback
 - Transimpedance: v_{out}/i_{in}
 - $V_{in}=0 \Rightarrow V_{out}(\omega)/i_{in}(\omega) = -Z_f = -1/j\omega C_f$
 - Integrator: $v_{out}(t) = -1/C_f \int i_{in}(t)dt$

\[v_{out}(t) = -Q/C_f \]

- «Gain»: $1/C_f$: 0.1 pF \rightarrow 10 mV/fC
- C_f determined by maximum signal

- **Integration on C_f**
 - Simple: $V = -Q/C_f$
 - Unsensitive to preamp capacitance C_{PA}
 - Turns a short signal into a long one
 - The front-end of 90% of particle physics detectors...
 - But always built with custom circuits...

![Charge sensitive preamp](attachment:image.png)

![Impulse response with ideal preamp](attachment:image2.png)
Non-ideal charge preamplifier

- **Finite opamp gain**
 - \[\frac{V_{out}(\omega)}{i_{in}(\omega)} = -\frac{Z_f}{(1 + C_d / G_0 C_f)} \]
 - Small signal loss in \(C_d / G_0 C_f \ll 1 \) (ballistic deficit)

- **Finite opamp bandwidth**
 - First order open-loop gain
 - \(G(\omega) = \frac{G_0}{(1 + j \omega/\omega_0)} \)
 - \(G_0 \) : low frequency gain
 - \(G_0 \omega_0 \) : gain bandwidth product

- **Preamp risetime**
 - Due to gain variation with \(\omega \)
 - Time constant : \(\tau = C_d / G_0 \omega_0 C_f \)
 - Rise-time : \(t_{10-90\%} = 2.2 \tau \)
 - Rise-time optimised with \(\omega_C \) or \(C_f \)

![Open-loop frequency response diagram](image)

![Impulse response with non-ideal preamp diagram](image)
Charge preamp seen from the input

- **Input impedance with ideal opamp**
 - \(Z_{in} = \frac{Z_f}{G+1} \)
 - \(Z_{in} \rightarrow 0 \) for ideal opamp
 - "Virtual ground" : \(V_{in} = 0 \)
 - Minimizes sensitivity to detector impedance
 - Minimizes crosstalk

- **Input impedance with real opamp**
 - \(Z_{in} = \frac{1}{j\omega G_0 C_f} + \frac{1}{G_0 \omega_0 C_f} \)
 - Resistive term : \(R_{in} = \frac{1}{G_0 \omega_0 C_f} \)
 - Exemple : \(\omega_C = 10^9 \) rad/s \(C_f = 0.1 \) pF => \(R_{in} = 10 \) k
 - Determines the input time constant : \(t = R_{eq} C_d \)
 - Good stability= (\ldots!)
Crosstalk

- **Capacitive coupling between neighbours**
 - Crosstalk signal is differentiated and with same polarity
 - Small contribution at signal peak
 - Proportionnal to C_x/C_d and preamp input impedance
 - Slowed derivative if $R_i C_d \sim t_p$ => non-zero at peak

- **Inductive coupling**
 - Inductive common ground return
 - "Ground apertures" = inductance
 - Connectors : mutual inductance
Noise in charge pre-amplifiers

- 2 noise generators at the input
 - Parallel noise: \((i_n^2) \) (leakage currents)
 - Series noise: \((e_n^2) \) (preamp)

- Output noise spectral density:
 \[
 S_v(\omega) = \frac{i_n^2 + e_n^2/|Z_d|^2}{\omega^2 C_f^2}
 = \frac{i_n^2}{\omega^2 C_f^2} + \frac{e_n^2 C_d^2}{C_f^2}
 \]
 - Parallel noise in \(1/\omega^2 \)
 - Series noise is flat, with a « noise gain » of \(C_d/C_f \)

- \textit{rms} noise \(V_n \)
 \[
 V_n^2 = \int S_v(\omega) \, d\omega / 2\pi \rightarrow \infty
 \]
 - Benefit of shaping...
Equivalent Noise Charge (ENC) after CRRC\(^n\)

- Noise reduction by optimising useful bandwidth
 - Low-pass filters (RC\(^n\)) to cut-off high frequency noise
 - High-pass filter (CR) to cut-off parallel noise
 - \(\rightarrow\) pass-band filter CRRC\(^n\)

- Equivalent Noise Charge : ENC
 - Noise referred to the input in electrons
 - \(\text{ENC} = \text{I}_a(n) e_n C_t / \sqrt{T} \oplus \text{I}_b(n) i_n^* \sqrt{T}\)
 - Series noise in \(1/\sqrt{T}\)
 - Parallel noise in \(\sqrt{T}\)
 - 1/f noise independant of \(T\)
 - Optimum shaping time \(\tau_{\text{opt}} = \tau_c / \sqrt{2n-1}\)

- Peaking time \(t_p\) (5-100%)
 - \(\text{ENC}(t_p)\) independent of \(n\)

- Complex shapers are obsolete :
 - Power of digital filtering
 - Analog filter = CRRC ou CRRC\(^2\)
Equivalent Noise Charge (ENC) after CRRCn

- **A useful formula:** ENC (e- rms) after a CRRC2 shaper:

\[
ENC = 174 \, e_n C_{tot} / \sqrt{t_p (\delta)} + 166 \, i_n \sqrt{t_p (\delta)}
\]

- e_n in nV/√Hz, i_n in pA/√Hz are the preamp noise spectral densities.
- C_{tot} (in pF) is dominated by the detector (C_d) + input preamp capacitance (C_{PA}).
- t_p (in ns) is the shaper peaking time (5-100%).

Noise minimization

- Minimize source capacitance.
- Operate at optimum shaping time.
- Preamp series noise (e_n) best with high transconductance (g_m) in input transistor.
- \Rightarrow large current, optimal size.
ENC for various technologies

- ENC for $C_d=1$, 10 and 100 pF at $I_B=500$ uA
- MOS transistors best between 20 ns - 2 μs

Parameters

- **Bipolar**:
 - $g_m = 20$ mA/V
 - $R_{BB'}=25$ Ω
 - $e_n = 1$ nV/$\sqrt{\text{Hz}}$
 - $I_B=5$ uA
 - $i_n = 1$ pA/$\sqrt{\text{Hz}}$
 - $C_{PA}=100$ fF

- **PMOS 2000/0.35**:
 - $g_m = 10$ mA/V
 - $e_n = 1.4$ nV/$\sqrt{\text{Hz}}$
 - $C_{PA}=5$ pF
 - $1/f$:
MOS input transistor sizing

- **Capacitive matching: strong inversion**
 - g_m proportional to $W/L \sqrt{I_D}$
 - C_{GS} proportional to $W*L$
 - ENC proportional to $(C_{det} + C_{GS})/ \sqrt{g_m}$
 - Optimum $W/L : C_{GS} = 1/3 \ C_{det}$
 - Large transistors are easily in moderate or weak inversion at small current

- **Optimum size in weak inversion**
 - g_m proportional to I_D (indep of W,L)
 - ENC minimal for C_{GS} minimal, provided the transistor remains in weak inversion
Example of charge preamps

- **FLC_PHY3 for CALICE Si diodes**
 - 18 channels variable gain low noise preamp
 - Optimized for $C_d=20-100$ pF
 - Bi-gain shaper
 - Linearity 0.1%
 - Multiplexed output
 - 3 000 chips produced in 2003 in 0.8µm

- **FLC_PHY4**
 - Variable gain preamp variable shaper
 - Pulsed power
 - Includes 12bit ADC
FLC_TECH1 : noise performance

- **FLC_TECH1 : 0.35µm**
 - Series : $e_n = 1.4 \text{nV/√Hz}$, $C_{PA} = 7 \text{ pF}$
 - $1/f$ noise : 12 e-/pF
 - Parallel : $i_n = 40 \text{ fA/√Hz}$

![Graph: ENC vs Peaking time and ENC vs Capacitance $t_p=100\text{ns}$]
16 channels readout for CdTe detector
- Low noise charge preamps
- Optimized for $C_d = 2\text{-}5 \text{ pF}$
- Variable SallenKey shapers
- Peak detection
- Discriminator
- Multiplexed output
Current preamplifiers:

- Transimpedance configuration
 - \(\frac{V_{\text{out}}(\omega)}{i_{\text{in}}(\omega)} = -\frac{R_f}{1+Z_f/GZ_d} \)
 - Gain = \(R_f \)
 - High counting rate
 - Typically optical link receivers

- Easily oscillatory
 - Unstable with capacitive detector
 - Inductive input impedance
 \[L_{\text{eq}} = \frac{R_f}{\omega C} \]
 - Resonance at: \(f_{\text{res}} = \frac{1}{2\pi} \sqrt{L_{\text{eq}}C_d} \)
 - Quality factor: \(Q = \frac{R}{\sqrt{L_{\text{eq}}C_d}} \)
 - \(Q > 1/2 \rightarrow \text{ringing} \)
 - Damping with capacitance \(C_f \)
 - \(C_f = 2 \sqrt{C_d/R_f G_0 \omega_0} \)
 - Easier with fast amplifiers

Diagram: Current sensitive preamp
High speed transimpedance amplifier

- **Fast transimpedance amplifiers**
 - $R_f = 25k \, C_f = 10fF$
 - SiGe process
 - 15 GHz gain-bandwidth product
 - See talk on OPERA_ROC

- **40 Gb/s transimpedance for optical receiver**
 - Simple architecture (CE + CC)
 - SiGe bipolar transistors
 - CC outside feedback loop

Open loop frequency response of SiGe amplifier
ADCs : G.D.A.S.A.P.

- The era of G.D.A.S.A.P. : « go digital as soon as possible »
 - Spectacular evolution of ADCs : more bits, faster, less watts
 - Propelled by evolution of technologies and telecom
 - Has revolutionized signal processing

Resolution vs speed of ADCs in 2002
© L. Dugoujon STm
Integrating the ADCs:

- Possible use of IPs (expensive)
- Huge effort started in in2p3/CEA
 - Several designs in institutes
 - 10 bit pipeline ADC (LPCC) 10MHz
 - 10 Bit C/2C SAR (LAL) 1 mW 1 MHz
 - 10 bit FADC (LAL) 100 MHz

 See poster by B. Genolini
 - 12 bit Wilkinson (CEA,LAL,LPCC)

 See talk by R. Gaglione 22/6

FEATURES

- Small Area < 0.83mm²
- Size x= 842µm y= 960µm
- Supply Voltage 2.7-3.6 V
- Junction Temp. Range -40 - 125°C
- Resolution 12-Bit
- Maximum Sampling Rate 1.5MS/s
- Track and Hold Input Stage
- Rail-to-Rail Dynamic Range
- Single Ended and Fully Differential Input Stage
- Low Power of 8mW at 3.3V Supply Voltage
- Self Power Down Mode

DESCRIPTION

The SCADC12F is a complete analog to digital converter cell which operates from a single supply. It performs sampling, analog-to-digital conversion, generating a true 12 bit value in parallel form. The output word rate can be up to 1.5MS/s. The output data format is compatible with most µP and digital signal processors and can be unipolar or bipolar.
Analog memories

- **Switched Capacitor Arrays (SCAs)**
 - Store signal on capacitors (~pF)
 - Fast write (~GHz)
 - Slower read (~10MHz)
 - Dynamic range: 10-13 bits
 - Depth: 100-2000 caps
 - Unsensitive to cap absolute value (voltage write, voltage read)
 - Low power
 - Possible loss in signal integrity (droop, leakage current)

- **The base of 90% of digital oscilloscopes!**
Example: SAM for HESS2

- Swift Analog Memory
 - 3 Gsamples/s >10 bits

See talk by E. Delagnes 20/6

Swift Analog Memory

3 Gsample/s >10 bits

16 columns

16 delays / column

wck

In

unsigned

buffers

Phase comparator
+ Charge Pump

2 ns pulse in SAM0

Chip layout in 0.35µ CMOS
Pipeline 12b 2GHz

- **MATACQVME**
 - VME board with 4-8 channels
 - 2 GHz - 12 bits
 - Auto-trigger mode
 - Sold by CAEN

![Diagram of Pipeline 12b 2GHz](image-url)
Digital filtering

- Linear sums of sampled signal
 - Finite Impulse Response (FIR)
 - made possible by fast ADCs (or analog memories)...

- Signal: \(s(t) = A g(t) + b \)
 - \(A \): amplitude
 - \(G(t) \): normalised signal shape
 - \(B \): noise
 - Sampled signal: \(s_i = A g_i + b_i \)

- Filter: weighted sum \(\sum a_i s_i \)
 - \(a_i = \sum R^{-1}_{ij} g_i \)
 - \(R \): autocorrelation function
 - \(g_i \): signal shape
 - \((0, 0.63, 1, 0.8, 0.47)\)
 - \(S = \sum_{i=1}^{n} a_i s_i \)
Exemple : ATLAS “multiple sampling”

- Slowing down the signal
 - Reduction of series noise
 - Similar to a simple integration

- Accelerating the signal
 - Reduction of pileup noise
 - Similar to a differentiation

- Measuring the timing

Signal before and after digital filtering

\[
\begin{align*}
A &= (0.17, 0.34, 0.4, 0.31, 0.28) \\
A &= (-0.75, 0.47, 0.75, 0.07, -0.19)
\end{align*}
\]
(R)evolution of analog electronics (1)

- Access to microelectronics

Charge preamp in SMC hybrid techno

Charge preamp in 0.8\(\mu\)m BiCMOS

FET

\(6\text{ cm}\)

\(100\,\mu\text{m}\)

\(Z_0\)

\(Z_f\)
(R)evolution of analog electronics (2)

- **ASICs**: Application Specific Integrated Circuits
 - Access to foundries through *multiproject runs (MPW)*
 - Reduced development costs: 600-1000 €/mm² compared to dedicated runs (50-200 k€)
 - Full custom layout, at transistor level
 - Mostly *CMOS & BiCMOS*

- **Very widespread in high Energy Physics**
 - High level of integration, limited essentially by power dissipation and parasitic couplings (EMC)
 - Better *performance*: reduction of parasitics
 - Better *reliability* (less connections)
 - But longer developpement time
Processing of ASICs

- From Sand to ICs...

RETICLE
(Pattern with 0.7 micron apertures ie 4 X 0.18)

Light Sensitive Coating.

Silicon Wafer

Lithography.

UV Light

CREATING > 125 million TRANSISTORS ON EACH MICROPROCESSOR;

WITH FEATURES 1/2000th THE WIDTH OF A HUMAN HAIR.
Evolution of technologies

First transistor (1949) (Brattain-Bardeen Nobel 56)

SiGe Bipolar in 0.35μm monolithic process

First planar IC (1961)

5 μm MOSFET (1985)

15 nm MOSFET (2005)

20 June 2005

C. de La Taille Tutorial Electronics for photodetectors Beaune 2005
Evolution of CMOS technologies

Moore's law: doubling every 2 years
Goal: Over 1 billion transistors by 2005

<table>
<thead>
<tr>
<th>Year</th>
<th>4004</th>
<th>8086</th>
<th>i386</th>
<th>Pentium</th>
<th>Pentium 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits</td>
<td>4</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Clock</td>
<td>108k</td>
<td>10M</td>
<td>33M</td>
<td>66M</td>
<td>1.5G</td>
</tr>
<tr>
<td>Memory</td>
<td>640</td>
<td>1M</td>
<td>16M</td>
<td>4G</td>
<td>64G</td>
</tr>
<tr>
<td>Tech</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>0.8</td>
<td>0.18</td>
</tr>
<tr>
<td>Trans</td>
<td>2300</td>
<td>29000</td>
<td>275000</td>
<td>3.1M</td>
<td>42M</td>
</tr>
<tr>
<td>Power</td>
<td>12</td>
<td>5</td>
<td>5</td>
<td>5/3.3</td>
<td>1.3 internal</td>
</tr>
</tbody>
</table>
« CMOS scaling »

- **Reduction of dimensions**
 - Gate length : L
 - Oxide thickness : t_{ox}

- **Reduction of power supplies**
 - Reduction of power dissipation

- **Improvement of speed in $1/L^2$**
 - Transconductance : $g_m \propto W/L$
 - Capacitance : $C \propto WL$
 - Speed : $F_T = g_m/C \propto 1/L^2$

- **Reduction of costs (?)**
 - Increase of integration density

- **Radiation hardness in bonus !**
 - Less trapping in gaye oxide

Principle of Nchannel MOSFET
Evolution of CMOS technologies (2)

- Differences between analog/mixed signal and digital technologies
 - Very fast evolution of digital technologies (faster design migration)
 - More « perene » analog technologies (SiGe, BiCMOS...) (driven by mobile telecom and automotive)
 - A visible split occurring

- More difficult analog design in low voltage
 - « no more headroom for signals »

![Diagram showing the evolution of gate length and voltage over time.](Image)
SiGe technology

- Faster bipolar transistors for RF telecom
 - Better mobility and FT
 - Better current gain (beta)
 - Better Early voltage
 - Interesting improvement at low T
 - Compact CMOS (0.25 or 0.35µm) for mixed-signal design

© R. Hermel

d’a après [1]
Cost of ASICs

- **MPW (multi-project wafers)**
 - CMOS 0.35µm (AMS) : 650 €/mm²
 - BiCMOS SiGe 0.35 µm (AMS) : 900 €/mm²
 - CMOS 0.13µ (STm) : 2500 €/mm²
 - CMOS 90 nm (STm) : 5000 €/mm²
 - Usually a few 10 to 100 pieces in a MPW run

- **Production runs**
 - Masks : 91 k€ (CMOS 0.35µm)
 - 8" wafers : 4 k€, useful area : 25 000 mm² = several thousands of chips

- **Packaging**
 - Ceramic : 20-30€/chip
 - Plastic : 2k€ + 1-2 €/chip

- **Example : chip 10mm² 16 channels**
 - 100 chips (MPW) : 120€/chip, 7€/channel
 - 10 000 chips (4wafers) : 12€/chip < 1€/channel
(R)evolution of digital electronics (1)

- From stacks of circuits to FPGAs: programmable gate arrays
(R)evolution of digital electronics (2)

- Schematic -> High level languages (Verilog, VHDL)
 - Example 8 bit comparator
 - 74LS866

- VHDL comparator:

  ```vhdl
  entity comparator_8 is
  port ( raz : in std_logic;
         val1, val2 : in std_logic_vector(7 downto 0)
       result : out std_logic
     );
  end entity comparator_8;
  architecture archi_& of comparator_8 is
  begin
    result <= '0' when raz = '0' else '1' when val1 > val2 else '0'
  end architecture archi_1;
  ```
(R)evolution of digital electronics (3)

- **Reduction of digital logic levels**
 - 1980: **TTL**: 0-5 V
 - 2000: **LVDS**: Low Voltage (±400 mV) Differential Swing
 - Better signal integrity (EMC)
 - Reduction of power supplies 5V → 3.3V → 2.5V → 1.2V

- **Components: the revolution of FPGAs**:
 - = Field Programmable Arrays (Altera©, Xilinx©)
 - 4-40 millions gates (55M in a Pentium4)
 - RISC 32bits processors
 - 10 Mbits resident memory
 - 2000 pins 1300 I/O (inputs/outputs)
 - 300 MHz operation
FPGAs as blackhole of digital electronics?

- RISC processors
- Memories & FIFOs
- Clocks & PLLs
- IP standard interfaces (Ethernet, USB, PCI...)
- Matching networks
- DSP blocks, arithmetics
- Bus interfaces (GTL, LVDS...)

©JP Cachemiche
Electromagnetic compatibility (EMC-EMI)

- **Coexistence analog-digital**
 - Capacitive, inductive and common-impedance couplings
 - A full lecture!
 - A good summary: there is no such thing as «ground», pay attention to current return
Effect of radiations on components

- **TID**: total ionising dose effects
 - Charge trapping in gate oxide
 - Alleviated in thin oxides (Deep SubMicron DSM)
 - Radiation tolerant layout techniques designed by CERN RD49 in 0.25µm

- **NIEL**: non ionising energy loss
 - Cristal damage with neutrons
 - Beta drop in bipolar transistors

- **SEU**: Single Event Effect
 - Effect of large ionising impact: local charge deposition on critical nodes
 - SEU: single event Upset = bit flip
 - SEL: single Event Latchup: thyristor setting -> destructive!

![Radiation levels in ATLAS (rads/an)](image)

1 krad/an 10^{11} N/cm²
1 Mrad/an 10^{14} N/cm²

Galactic Cosmic Rays

Solar Protons & Heavier Ions

Trapped Particles
Radiation hardness: space vs LHC

<table>
<thead>
<tr>
<th></th>
<th>Space missions</th>
<th>LHC experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Time</td>
<td>10-15 years</td>
<td>10 years</td>
</tr>
<tr>
<td>Service</td>
<td>Not Possible</td>
<td>Impractical</td>
</tr>
<tr>
<td>Electronics Reliability</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Total Dose Requirements</td>
<td>10 -100 krad</td>
<td>1 krad - 10 Mrad</td>
</tr>
<tr>
<td>Non Ionizing Energy Loss (N)</td>
<td>~0</td>
<td>$10^{13}-10^{15}$ N/cm²</td>
</tr>
<tr>
<td>Single Event Upsets</td>
<td>IC's SEU characterised</td>
<td>No Critical SEU Accepted</td>
</tr>
</tbody>
</table>

=> Similar requirements
Summary of radiation effects on components

IONISING
(TID)
Gy, rad

- NMOS: $V_t \uparrow$ or \downarrow
- PMOS: $V_t \uparrow$
- $g_m \downarrow$
- $I_{\text{leak}} \uparrow$

NON IONISING
(NIEL)
Fluence or particles/cm²

- Atomic displacement

Bipolar:
$\beta \downarrow$

Optoelect.

Single Event Effects
(SEE)
Occurrence rate

- SEU (transient)
- SEE permanent
- SEL, SEGR, SEB

MOS

©N. Seguin-Moreau

20 June 2005

C. de La Taille Tutorial Electronics for photodetectors Beaune 2005

46
Examples: tracker circuits APV25

- **High level of intégration**
 - 128 preamps/shapers, 128*160 analog pipelines
 - Mode peak & déconvolution, multiplexed output, internal calibration...

- **Performance**
 - Dynamic range ±13 MIP, low dissipation (2µW/ch), Low noise: ~200e-

[Diagram of APV25 readout chip]
Example 2: variable everything

- SiPM readout chip for CALICE AHCAL
- 0-5V 8 bit DAC for gain adjustment
- Variable gain preamp
- Variable gain shaper
- 18 channels, multiplexed output

SiPM readout chip for CALICE AHCAL

- Gain adjustment
- Preamp
- Shaper
- 18 channels

SiPM +HV

100 kΩ

100 MΩ

0.1p

0.2p

0.4p

0.8p

DAC

0-5V

10p

Rin =

10k

Ω

8-bit

12k

Ω

2.4p

1.2p

0.6p

0.3p

100 MΩ

4kΩ

24p

12p

6p

3p

2.4p

1.2p

0.6p

0.3p

0-5V 8 bit DAC for gain adjustment

Variable gain preamp

Variable gain shaper

18 channels, multiplexed output
Example 3: Towards SoCs...

- **System on Chip (SoC):** multi-fonctionnalité
- **Ex:** ARS chip for Antarès: pipelines 1GHz, TDC, ADCs...
Evolution 1: integrating the detector (MAPS)

RAL Camera-on-a-chip

- 0.5 µm CMOS technology
- Design 1st time right
- Noise ≤ 50 electrons
- Power consumption: ≤ 300mW
- 3.3V Operation
- Readout control
- Readout speed: 10 Frames/Second
- Adjustable Gain Column Amplifiers
- 10 Bit ADC/Column
- Alternative analogue output
- Parallel digital output
- I2C control system
- Rad Tolerant Design, Triple

525 by 525 array of 25µm pixels
Evolution 1: integrating the detector (TFA)

TFA or above ASIC technology

- Emerging sensor technology for APS
 - Adapted for a-Si:H thick films
 - Bottom thin n-doped layer ~ 20 nm
 - Middle thick i-layer layer ~ 5-30 μm
 - Top thin p-doped layer ~ 40 nm
 - Indium Tin Oxide ITO ~ 100nm
 - Pixel segmentation of the n-i-p film
 - High resistivity n-layer

![TFA Concept](image)

![Thick TFA cross section](image)
Evolution 2: integrating the backend

- ALICE TPC readout: ALTRO chip (CERN) 8 ch/chip
 - Internal ADC: 10 bits 20MHz
 - Digital tail cancelation and baseline correction

Power consumption: < 40 mW/channel

- L1: 5 µs
 - 200 Hz
- L2: < 100 µs
 - 200 Hz

- 8 CHIPS x 16 CH/CHIP

- CUSTOM IC (CMOS 0.35 µm)

- CUSTOM IC (CMOS 0.25 µm)

- 570132 PADS

- PASA

- ADC

- Digital Circuit

- RAM

- MULTI-EVENT MEMORY

- Power consumption: < 40 mW/channel

- 1 MIP = 4.8 fC
 - S/N = 30 : 1
 - DYNAMIC = 30 MIP

- CSA
 - SEMI-GAUS. SHAPER
 - GAIN = 12 mV/fC
 - FWHM = 190 ns

- 10 BIT
 - < 10 MHz

- • BASELINE CORR.
 - • TAIL CANCELL.
 - • ZERO SUPPR.
Integrating the backend (2)

- ALTRO chip (CERN)
 - Detail du digital processing
Conclusion

- A real move towards “smart sensors”

- micro-electronics getting closer to detector
 - Unavoidable with increase of channels number
 - Cost reduction

- Backend more and more integrated
 - Integration of ADC
 - Signal processing
 - Loading of parameters

USB