The Light Amplifier Concept

Daniel Ferenc1
Eckart Lorenz1,2
Daniel Kranich1
Alvin Laille1

(1) Physics Department, University of California Davis
(2) Max Planck Institute, Munich

Work supported partly by DOE, National Nuclear Security Administration (NNSA), Office of Nonproliferation Research and Engineering
Future particle astrophysics projects to study very rare phenomena

- Proton Decay
- Neutrino Physics
- Neutrino Astrophysics
- Gamma-ray Astronomy
 (low detection threshold & wide acceptance angle)
- Ultra-high energy cosmic rays (>10^{19} eV)
- Neutrinoless Double Beta Decay
- WIMP Searches
SEARCHING FOR RARE AND/OR WEAK RADIATION SOURCES

PARTICLE ASTROPHYSICS
(new generation of experiments)

NUCLEAR SECURITY
(nonproliferation)

MEDICAL IMAGING
WIDELY ACCESSIBLE MEDICAL DIAGNOSTICS
Industrial Mass-Production of Very-large-area cameras
small pixels, small area

SCALE

Larger pixels, huge area

Small animal PET

MEDICAL IMAGING

‘Large animal’ (human) PET

Luggage radiation monitoring

NUCLEAR SECURITY

~CONTAINER, TRUCK etc. monitoring

MARKETS (STEADY, SUBSTANTIAL)

SUPER-K

PHYSICS

UNO, HYPER-K MEMPHIS
A new Technology for Industrial Mass-Production of large photosensor areas, based on modified existing technologies (e.g. the assembly of modern, plasma and field-emission flat-panel TV screens; low production cost ~$1000 per sq. meter).

+ ‘REAL’ (non-physics) MARKETS,
Several Unconventional Photosensors

- Flat-Panel *ReFerence* Camera Concept (Patented)

- *Light Amplifier* - general concept
 - ReFerence panels \rightarrow scintillator (fiber) readout
 - QUASAR or SMART PMT in a modified configuration
 + Geiger-mode APDs

- “SIMPLE” Space Imaging Camera Concept for EUSO, OWL, but also ground-based applications (Patented)
Cherenkov angle in water
\(\sim 40\) degrees

Full angular coverage

→ “Camera” surrounds the detector volume
Irreducibly Large Illuminated Area

strong **internal** signal concentration

Vacuum

(photon \rightarrow photoelectron \Rightarrow ‘no more Liouville’)
Semiconductor Photosensors
→ developed very successfully
(but pixel sizes and areas - too small)

Vacuum Photosensors
(suitable for large-area applications, strong area reduction) did not develop significantly since mid-1960s

Why?
Because of the Vacuum?
Development of Other Vacuum Devices

~1960

~2000

Production Cost: < $1,000 per m²
7-pixel 5-inch ReFerence Flat-Panel Prototype

POSTER SESSION 1

UHV Transfer System:
- Photocathode deposition
- Indium/Au/Cr deposition
- Vacuum sealing
Ideal Light Concentrator
(takes the maximum of Liouville!)

Optimal Electron Lens

Photon

PIN, APD, or SCINTILLATOR

Photoelectrons

Photocathode

Optimal Electron Lens
Very Important: Hexagonal Packing
Flat-Panel Honeycomb Sandwich Camera Construction

Industrial Production (no glass blowing etc.)
Intrinsic Mechanical Stability, Low Buoyancy,..
Strong signal concentration, factor ~ 1500
(one of our goals)

Replaces the entire Dynode Column!
Provides ~100% Collection Efficiency!

- APD
- Scintillator + Fiber (both of small and comparable diameter \(\rightarrow\) good coupling efficiency)
Light Amplifier Concept

Scintillators + fiber optics

NO electronics in the vacuum

Resolution determined outside !!

READOUT ➔ APD array
Light Amplifier Concept

Scintillators + fiber optics

NO electronics in the vacuum

Resolution determined outside !!
SMART PMT, QUASAR
Hemispherical LIGHT AMPLIFIER

Scintillator
Y2SiO5(Ce)

Geiger-mode APD array

Al (100 nm)

Fiber Plate

1 photoelectron \rightarrow >15 photons in APD

SMART PMT, QUASAR
CURRENT SETUP

SINGLE Geiger-mode APD, 1x1 mm²

No face-plate → low light
Collection Efficiency ~1:150

SMART PMT, QUASAR

Pulsed LED+fiber
Geiger-mode APD

ZS-2 from Sadygov, MICRON

EXTREMELY SIMPLE!
Very Simple Electronics

57.4 mV

20 kΩ

20 kΩ

1 kΩ

1 photo-electron → 200 mV

ZS-2 from Sadygov, MICRON

g = 25

1 pe → 200 mV
A Typical Single-Photon Signal in the Geiger-mode APD

1 photo-electron \rightarrow 200 mV
Superposition of many light pulses in the Geiger-mode APD (signal integrated)

\[\sim 5 \text{ photo-electrons} \rightarrow 1 \text{ V} \]
Superposition of many light pulses in the Geiger-mode APD (full bandwidth)

Note the individual photon structure and decay spectrum of the scintillator
Rotating Light Source (LED)

Image @ Scintillator

→ IMAGING (even without fiber coupling)
CONCLUSIONS

Light Amplifier:

LIGHT IN-(VACUUM)-LIGHT OUT

- CONCENTRATION (photoelectron focusing)
- AMPLIFICATION (photoelectron acceleration)

ADVANTAGES:

- No electronic components in the vacuum
- Extreme Simplicity & Robustness
 - Low cost, mass production

Tested - a QUASAR tube + a Geiger-mode APD
“Light Amplifier” Concept

Scintillators + fiber optics

NO electronics inside!!

Resolution determined outside!!

READOUT ➔ APD array
Spherical LIGHT AMPLIFIER

Fiber Plate

scintillator

Al (100 nm)

Geiger-mode APD array

1 photoelectron \rightarrow >15 photons in APD

SMART PMT, QUASAR
Silicon photomultiplier (SiPM)

SiPM main features:
- Sensitive size $1\times1\text{mm}^2$ on chip $1.5\times1.5\text{ mm}^2$
- Gain 2×10^6
- $U_{\text{bias}} \approx 50\text{V}$
- Recovery time $\sim 100\text{ ns/pixel}$
- Number of pixels: 576
- Nuclear counter effect: negligible (due to Geiger mode)
- Insensitive to magnetic field
- Dynamic range $\sim 10^5\text{mm}^{-2}$

For further details see:
- "Advanced study of SiPM"

B. Dolgoshein "SiPM possible applications"

Single photoelectron (single pixel) spectra

SiPM:
- excellent single photoelectron resolution
- low ENC expected

More about pixel signal resolution: tens of photoelectrons

$N_{ph} \approx 46$

- SiPM consists of a large number of pixel photoelectron counters with binary readout for each pixel, working as analogue device
- signal uniformity from pixel to pixel is quite good