The Light Amplifier Concept

Daniel Ferenc¹ Eckart Lorenz^{1,2} Daniel Kranich¹ Alvin Laille¹

(1) Physics Department, University of California Davis(2) Max Planck Institute, Munich

Work supported partly by DOE, National Nuclear Security Administration (NNSA), Office of Nonproliferation Research and Engineering

Future particle astrophysics projects to study very rare phenomena

- Proton Decay
- Neutrino Physics
- Neutrino Astrophysics
- Gamma-ray Astronomy

(low detection threshold & wide acceptance angle)

- Ultra-high energy cosmic rays (>10¹⁹ eV)
- Neutrinoless Double Beta Decay
- WIMP Searches

SEARCHING FOR RARE AND/OR WEAK

RADIATION SOURCES

PARTICLE ASTROPHYSICS

(new generation of experiments)

NUCLEAR SECURITY (nonproliferation)

MEDICAL IMAGING

WIDELY ACCESSIBLE

MEDICAL DIAGNOSTICS

Industrial Mass-Production

of Very-large-area cameras

OUR GOAL

A new Technology for **Industrial Mass-Production** of large photosensor areas, based on modified existing technologies (e.g. the assembly of modern, plasma and field-emission flat-panel **TV** screens; low production cost ~\$1000 per sq. meter)

+ 'REAL' (non-physics) MARKETS,

Several Unconventional Photosensors

- Flat-Panel *ReFerence* Camera Concept (Patented)
- Light Amplifier general concept
 - ReFerence panels → scintillator (fiber) readout
 - QUASAR or SMART PMT in a modified configuration

+ Geiger-mode APDs

"SIMPLE" Space Imaging Camera Concept for EUSO, OWL, but also ground-based applications (Patented)

The Unbeatable Reality of Mr. Liouville

Cherenkov angle in water ~40 degrees

Full angular coverage

"Camera" surrounds the detector volume

Irreducibly Large Illuminated Area

strong <u>internal</u> signal concentration

Vacuum

(photon → photoelectron → 'no more Liouville')

Semiconductor Photosensors → developed very successfully (but pixel sizes and areas - too small)

Vacuum Photosensors

(suitable for large-area applications, strong area reduction) did not develop significantly since mid-1960s

Why?

Because of the Vacuum?

Development of Other Vacuum Devices

~1960

~2000

Production Cost: < \$1,000 per m²

7-pixel 5-inch ReFerence Flat-Panel Prototype

- **UHV Transfer System :**
- Photocathode deposition
- Indium/Au/Cr deposition
 - Vacuum sealing

Optimal Electron Lens

Very Important: Hexagonal Packing

Flat-Panel Honeycomb Sandwich Camera Construction

Industrial Production (no glass blowing etc.) Intrinsic Mechanical Stability, Low Buoyancy,..

Strong signal concentration, factor ~ 1500 (one of our goals)

Replaces the entire Dynode Column! Provides ~100% Collection Efficiency!

- APD
- Scintillator + Fiber (both of small and comparable diameter → good coupling efficiency)

Light Amplifier Concept

SMART PMT, QUASAR

SMART PMT, QUASAR

Very Simple Electronics

A Typical Single-Photon Signal in the Geiger-mode APD

Superposition of many light pulses in the Geiger-mode APD (signal integrated)

Superposition of many light pulses in the Geiger-mode APD (full bandwidth)

Note the individual photon structure and decay spectrum of the scintillator

Rotating Light Source (LED)

Image @ Scintillator

MAG

cm 30 cm

→ IMAGING (even without fiber coupling)

CONCLUSIONS

Light Amplifier :

LIGHT IN-(VACUUM)-LIGHT OUT

- **CONCENTRATION** (photoelectron focusing)
- **AMPLIFICATION** (photoelectron acceleration)

ADVANTAGES :

- No electronic components in the vacuum
- Extreme Simplicity & Robustness

 \rightarrow Low cost, mass production

Tested - a QUASAR tube + a Geiger-mode APD

"Light Amplifier" Concept

determined outside !!

SMART PMT, QUASAR

Silicon photomultiplier (SiPM)

For further details see: «Advanced study of SiPM» http://www.slac.stanford.edu/pubs/icfa/fall01.html

B.Dolgoshein "SiPM possible applications"

Single photoelectron (single pixel) spectra

More about pixel signal resolution: tens of photoelectrons

 SiPM consists of a large number of pixel photoelectron counters with binary readout for each pixel, working as analogue device
signal uniformity from pixel to pixel is guite good