

5th International Conference on New Developments In Photo-Detection 2008

Palais des Congrès, Aix-les-Bains, France, June 15-20, 2008

Highlights of Poster Session I

Thierry Gys CERN – Geneva – Switzerland

Poster Session I - details

- ◆ 25 contributions (originally 27 2 withdrawn)
- Covered technologies and fields are:
 - Avalanche and PIN photo-diodes 8 contributions
 - CMOS and CT detectors 3 contributions
 - Gaseous detectors 5 contributions
 - Vacuum photo-detectors (PMTs, HPDs, MCPs) 9 contributions
 - Some overlap

- Many thanks to (almost) all contributors for their highlight slides!
- Very helpful material, sometimes complemented by previous literature on the same subject
- Order of presentation is numerical no preference!
- Apologies for possible (probable) inconsistencies be tolerant!

Avalanche and PIN photo-diodes

8 contributions

NDIP 2005

Prototype and mass production tests of Avalanche Photo Diodes for the Electromagnetic Calorimeter in the ALICE experiment at LHC – F. Riggi et al. – PO27

ALICE EMcal design

- Coverage: |n| < 0.7, $\Delta \Phi = 110^{\circ}$
- Lead-scintillator sampling calorimeter - Shashlik fiber geometry
- APD readout (13k)
- Test procedure
 - Selecting APDs according to their performance
 - Measuring the APD gain dependence on the bias voltage (Voltage Coefficient dM/dV × 1/M)
 - Evaluating the nominal voltage setting for the APD to obtain gain M=30
 - Measuring the APD gain dependence on the operating temperature (Temperature Coefficient dM/dT × 1/M)

APD 9

1/M dM/dT = -1.71 %/C

 $M \times dM/dT vs$

Temperature [deg]

Application of Simple Negative Feedback model for Avalanche Photo Detectors investigation – V. Kushpil – PO46

APD model

- Derivations from Miller's gain formula: APD ~ system w. negative feedback B
- Results in 4 behaviour types
 - B=0 no negative FB
 - K>0 FB rise slower than gain rise unstable operation
 - K=0 FB rise equal to gain rise stable
 - K<0 FB rise faster than gain rise stable

• Experimental results

- B found from difference between experimental and simulated values of 1/M(V)
- K and B found as sensitive variables useful for description of APD gain behavior
- The model also describes dynamics features of the APD response

A Study of deep diffused, low resistivity, silicon avalanche photodiode coupled to a LaBr₃:Ce scintillator M. McClish et al. – P062

Motivations

- Improved spectroscopic performance
- New APD fabrication process, using lower ρ Si

Performance

- QE has improved by ~ 2 across the emission range for LaBr3:Ce
- Noise has decreased by ~ 4 for the same area and temperature
- Using LaBr₃:Ce, the energy resolution is 2.55% (FWHM) at 662 keV! Comparable to CZT The resolution from LaBr₃:Ce coupled to PMT is 3.0%

T. Gys - Highlights Poster I - NDIP 2008

Bias (V)

Noise (electrons-RMS)

An alternative to silicon-based sensors for single photon detection at 1064nm – A. Rochas et al. – P069

Single-photon detector combining:

- InGaAsP/InP APD
 - InGaAsP quaternary absorber optimized for 1064nm
 - InP multiplication layer
 - 3-stage TEC integrated in TO8 (down to 50°C)
 - free-space
- Integrated pulser
 - Chip area: 1.6mm²
 - 0.8µm CMOS technology
 - Supply voltage VDD=+5V

Performance

- Dark Count Rate
 - <60Hz @ det. prob. of 7.5%, <400Hz @ 15%, <2.5kHz @ 30%
 - @ 40°C, 80 μ m \varnothing APD
- Afterpulsing
 - <1% @ det. prob. of 7.5% and 20µs dead time, <3% @ 15% and 20µs, <5% @ 30% and 50µs
- Single pe det. prob.
 - up to 30% at 1064nm
 - spectral range [900,1200nm]
- Timing resolution
 - <150ps

A design for a linear array PIN photodiode for use in a Computed mammo-Tomography (CmT) System S.-W. Park - P085

Motivations

NDIP 2005

Detection of scintillation light from $Pr:Lu_3Al_5O_{12}(LuAG)$ by Gallium nitride photodiode – K. Kamada et al. – PO90

T. Gys - Highlights Poster I - NDIP 2008

10

Digital electronics for PSAPD-based Gamma Cameras Materials and Methods – A. Fallu-Labruyère – P194

Motivations

- Characterize Position-Sensitive Avalanche photodiode performance wrt size and operating temperature
- Use light pulser and CsI(Tl) crystal arrays
- Use coincidence digital spectrometer DGF-Pixie-4

Results

- Position resolution of 2.2mm±0.2mm measured with 28x28 mm² devices cooled at -32°C
- Digital electronics easily scalable and well suited for larger field-ofview gamma cameras (detector tiling instrumentation).

Position resolution versus device size and temperature (140keV, 100ns peaking time) Upper corner: flood exposure, -20°C, CsI(Tl) array 1.35mm pitch, 8x8 mm² PSAPD

CMOS and CT detectors

3 contributions

A method to remove the projection error in triple-energy radiography with contrast medium – N. Lanconelli – P071

Motivations

- Multi-energy CT
- Quasi-monochromatic X-ray beams with energy 20-70keV
- Triple-energy radiography results in projection errors 10 to 60 times smaller, with respect to the dualenergy errors

Results

Dual-energy

T. Gys - Highlights Poster I - NDIP 2008

150

200

Ionization versus displacement damage effects in proton irradiated CMOS sensors manufactured in deep submicron process – V. Goiffon et al. – P108

Motivations

A

 Study of proton irradiation effects on CMOS sensors manufactured in a deep submicron technology dedicated to imaging applications

Test chip

- 0.18 µm CMOS CIS technology
- Shallow trench isolations (STI), dedicated photodiode doping profiles ~
- 128 x 128 pixel array, 3T, 10µm pitch
- Larger photodiodes (>10⁴ μm²), others tests structures (MOSFET)
- Proton irradiation
 - Facilities : KVI, UCL, Isotron
 - Energies : 7.4 to 200 MeV
 - Fluences : 5 \times 109 to 3 \times 1011 H+/cm²
- Results
 - No photo-response degradation, no voltage shift, no gain reduction
 - Ionization-induced dark current increase is the main degradation
 - Displacement damages still play a significant role in uniformity degradation

High-Performance Imagers for Space Applications: the Strong Benefits of CMOS Image Sensor Processes O. Saint-Pe et al. – P162

Motivations

 Moving forward by using available CMOS image sensor processes to build high electro-optics performance image sensors dedicated to space applications

First Operational Application

- Earth spectral imaging on geostationary orbit - launch at end of 2008
- 2M pixels 2D array, 3T photo-diodes, 11x14 μm² pitch, 0.35 μm CMOS CIS technology
- High QE and MTF, low dark current

Second Application

- EC & ESA Sentinel 2 program in low Earth orbit - launch in 2012
- Multi-linear detector with 10 photodiodes rows, 7.5 and 15 μm pitch
- 12 Detectors per Focal Plane, 250 mm length, 290 km Swath with 10 and 20 m resolutions

Upstream Programs & Perspectives

- Sensitivity Improvement
- Reduced Pitch / Higher Density
- Read Out Noise Reduction
- On Chip Signal Processing

Gaseous detectors

contributions

Photoelectron Backscattering in Ar-CF₄ and Xe-CF₄ gaseous mixtures – J. Matias-Lopes et al. – P120

Achieved results

- CE f studied for photoelectrons emitted from a CsI photocathode irradiated with a Hg(Ar) lamp (185nm centered, 5nm FWHM)
- Ar-CF₄ and Xe-CF₄ mixtures studied as a function of CF₄ concentration
- Reduced electric fields E/p: 0.1, 0.3, 1.0 and 2.6 V cm⁻¹ Torr⁻¹, where p is the gas pressure
- Dashed curves represent the corresponding CH₄ based mixtures

Addition of CH₄ or CF₄ to noble gases efficiently increases photoelectron transmission and drift velocity, due to the important role played by the vibrational excitation of the molecules at low electron impact energies

Influence of the substrate surface texture on the stability of CsI thin film photocathodes - M.-A. Nitti et al. - P168

CsI photo-cathodes

- hygroscopicity
- stability of photoemission properties influenced by surface morphology
- film growth in separate islands ⇒ no structural change after exposure to moisture

Patterning of conductive substrates by colloidal lithography

NDIP 2005

Ar-Xe mixtures and their use in curved grid gas proportional scintillation counters for X-rays - S. do Carmo et al. - P177

- Gas Proportional Scintillation Counters
 - competitive with solid-state based detectors when large detection areas are required and for soft Xray detection.
 - very short (a few 100µm) L_a in pure Xe for soft X-rays ⇒ loss of primary electrons to the detector window by backscattering
 - Ar-Xe mixtures: longer L_a, similar scintillation yields, improved Fano factor F and w values.
- Achieved results for each Ar-Xe mixture
 - energy resolution
 - scintillation yield
 - thresholds for scintillation and ionization
 - spectra distortion minimized by « curve grid technique » shown to be gas-independant

GPSC

Gas VUV Photo-sensors Operating Face-to-Face J. Veloso et al. – P196

- CsI-MHSP photo-sensor for γray detection
 - Micro-Hole and Strip Plates coated with a 500nm CsI film)
 - High gains > 10⁴ @ 1bar Xe
 - Fast charge collection tens of ns
 - High rate capability > photons MHz/mm2
 - 2-D intrinsic capability σ~125μm (with resistive line)
- Performance

- Good position detection between both photo-sensors
- Fair photoelectron collection independent of gas pressure (up to 5 bar of Xe)
- Vertical z position almost independent on the photon energy
- Future work: 3D detection (z,x,y); add a small quantity of CF₄ to Xe to increase photoelectron collection efficiency

<u>VUV scintillation from</u> <u>HpXe</u> - gamma absorption produce electrons - electron drift between meshes induces secondary scintillation - VUV photons reach both photo-sensors

Vacuum photo-detectors (PMTs, HPDs, MCPs)

9 contributions

Investigation of ion feedback after-pulse spectra by the autocorrelation method – V. Morozov et al. – P055

Motivations

- Study AP time and charge distributions for various PMTs
- Establish criteria for selection of PMTs with low AP rate
- Principle of operation
 - Based on autocorrelation method
 - Time range: up to 8µs
 - Use blue and red lights: AP time dependence clearly seen
 - Focussing potential distribution plays essential role
 - Two-stage autocorrelation spectrometer allows for the registration of a second AP (SAP) in the time range chosen for the registration of the first AP (FAP).

Time

XP2020 PMTc

2

t(us)

3

START

DI

Advances in Anodic Alumina MCP development G. Drobychev et al. – P063

Anodic alumina oxide (AAO)

- Alternative to standard leadsilicate-glass MCP manufacturing
- See NDIP05 for preliminary results
- A technology to increase AAO electric conductivity was developed
- New samples: R around tens of MΩ. The resistivity can be varied in a wide range, depending on the technological production parameters
- An etching technology, which has a characteristic "anisotropy" due to porous structure of the AAO is also developed
- Produced channels are open-ended and have constant diameter along the full depth of a plate. However, a technology optimization is still required
- Plans to reach 150–180 µm MCP thickness while maintaining MCP structure parameters

SEM images

PMm²: A R&D on a triggerless acquisition for next-generation neutrino experiments - B. Genolini et al. - P093

- Next-generation MT-scale water tanks
 - very large surfaces of photodetection and large data volume
- PMm² R&D project
 - Triggerless data acquisition (no possible local coincidence)
 - Replace large 20" PMTs by 12" (cheaper)
 - Modular design (assembly by 16 PMTs)
 - Underwater front-end electronics (less cables)
- R&D organization
 - ASIC development
 - 10b-resistant 12" PMT
 - 100m-long cable, surface controller
 - Water tightness, mechanics
 - 16-PMT demonstrator to be installed end 2009

http://pmm2.in2p3.fr

100m cable

Offline processing (on the surface): - Coincidence - Noise rejection - Trajectory reconstruction

PARISROC:

-16 independent channels -Analog processing + digitization -Charge: 1 to 300 photoelectrons -Time: 1 ns resolution FWHM

Investigation of the Secondary Emission Characteristics of CVD Diamond Films for Electron Amplification J. Lapington et al. – P110

CVD Diamond dynode advantages

Time (s)

Scintillating Crystal Hybrid Photon Detector (X-HPD) development for the KM3NeT km³-scale neutrino telescope G. Hallewell – P136

KM3Net

- Future deep-sea neutrino telescope with a >1km³ volume
- « Offspring » of ANTARES, NEMO and NESTOR
- Good angular resolution for $\mu,$ $E_{\nu} \mbox{>} 10 \mbox{TeV},$ E_{τ} a few 100GeV
- Sensitive to all v flavours and neutral-current reactions
- X-HPD advantages
 - High E-field:
 - <1ns TTS
 - insensitive to Earth's B-field
 - photon counting
 - Spherical PC:
 - ~100% CE over 3π
 - Double PC effect
 - Overall ϵ >35% (16-23% for hemispherical PMTs)
 - Increase Č photon horizon and instrumentable sea water volume
- 8" Photonis prototype tests
 - Currently with metal anode

T. Gys - Highlights Poster I - NDIP 2008

100

0.01

effective area (m^2)

PMT Selection for the MAGIC II Telescope Ching-Cheng Hsu - P203

MAGIC I telescope

- Gamma-ray astronomy at low energies (<70GeV threshold) with high sensitivity
- Search for eg Active Galactic Nuclei
- MAGIC I: 236 m² single Imaging Atmosphere Cherenkov Telescope (IACT)
- Magic II upgrade towards lower energies

PMT requirements

- High QE and DQE
- Low gain 2-5×10⁴ (ageing)
- Low afterpulse rate
- Good resolution
- Tests of 25 PMTs from 2 manufacturers
 - Performance comparable
 - Better QE for Hamamatsu

(http://wwwmagic.mppmu.mpg.de/)

T. Gys - Highlights Poster I - NDIP 2008

45

40

20

15

10

\$ 35 ш 0₃₀

Very High QE HPDs with a GaAsP Photocathode for the MAGIC Telescope Project - T. <u>Saito - P128</u>

HPD specifications

QE curves

Quantum Efficiency

60

50

40

30

20

10

200

300

400

Q.E. [%]

- GaAsP PC: very high QE ⇒ telescope energy threshold halved
- APD with T effect compensation (thermistor) for the gain
- Multi photon counting capability
- Fast pulse: <1ns rise time</p>
- Ageing tests: 20% degradation with 300MHz photon background -1000h/year for 10 years

HPD 131

HPD 129

- HPD 128

- HPD 125

PMT

500 600 700 800

Wave Length [nm]

- 125 with WLS

 300 times lower afterpulsing rate than currently-used PMT

10 yrs

10⁴

Time [Hour]

10⁵

T. Gys - Highlights Poster I - NDIP 2008

10

10²

10³

Aging Measurement

¹²⁰

100

80

60

40

20

1

Current

Relative Anode

28

Performance of photomultiplier tubes for cryogenic applications V. Gallo et al. - P232

Dark matter WArP experiment

- Inner bi-phasic TPC, outer veto, both filled with LAr (GAr) @ 87K.
- WIMP-nucleus elastic scattering: 2 ionization signals S1 (prompt) and S2 (ionization e-) @ 128nm shifted to 420nm

PMTs

- Bi-alkali PC with Pt under-layer to decrease $\rho @ low T$
- QE220% @ 400nm @ low T
- Materials with low radioactive contamination

◆ Tests of >300 PMTs in liquid N₂

- Gain, resolution, SNR, DCR
- Behaviour w. time: exponential decrease of gain with $\tau \sim 4-5h$, otherwise stable 1017

Gain 1 @ low T

1.486e+10 / 41 4.75e+06 ± 1.089e+04

9.034e+05 ± 1.118e+04

307.2+11.77

y2 / nd

const

5175

T. Gys - Highlights Poster I - NDIP 2008

PMT

WIMP

GAr

Conclusions and perspectives

WELCOME TO POSTER SESSION I !

All contributors are looking forward to seeing you in the Poster and Exhibition Hall