The quest for a third generation of gaseous Photon Detectors for Imaging Cherenkov Counters

Fulvio Tessarotto

Introduction

Limitations of MWPC's with Csl

The choice of THGEM detectors

Characterization and optimization

Large area THGEM based PD's

Cherenkov Imaging Detectors presently in use or construction in particle and nuclear physics

_	
feo	field of Physics
not list	heavy and light quark spectroscopy
s are	
*	K physics
imen	B physics
experi	Longitudinal and transverse s nucleon, generalized parton o
ded	quark-gluon fusion
Iclu	heavy ion physics
5	hadron properties in normal a
0	nuclear matter
0	hypernuclei

field of Physics	experiment	where	status
heavy and light	BABAR	SLAC	active
quark spectroscopy	superBELLE	KEK	proposal
	CLEO III	CORNELL	active
	COMPASS	CERN	active
	COMPASS2	CERN	proposal
	future superB		
	PANDA	GSI	preparation
	MIPP	FERMILAB	active
	GlueX	Jlab	preparation
K physics	P326	CERN	proposal
B physics	BABAR	SLAC	active
	superBELLE	KEK	proposal
	future superB		
	LHCb	CERN	starting
Longitudinal and transverse spin structure of the	COMPASS	CERN	active
nucleon, generalized parton distribution function	COMPASS2	CERN	proposal
	HERMES	DESY	just concluded
	PANDA	GSI	preparation
	PHENIX	BNL	active
	Hall A	JLAB	active
quark-gluon fusion	ALICE	CERN	starting
	ALICE upgrade	CERN	proposal
heavy ion physics	BRAMHMS	RHIC	active
	PHENIX	RHIC	active
	ALICE	CERN	starting
hadron properties in normal and heigh density	СВМ	GSI	preparation
nuclear matter	HADES	GSI	active
hypernuclei	PANDA	GSI	preparation

Photon Detectors used for RICHs belong to three chategories:

Vacuum based PDs

- PMTS (SELEX, HERMES, BaBar)
- MAPMTs (HERA-B, COMPASS)
- Flat panels (various test beams, proposed for CBM)
- Hybride PMTs (LHCb)
- MCP-PMT (all the studies for the high time resolution applications)

Gaseous PDs

- Organic vapours: TMAE and TEA (DELPHI, OMEGA, SLD CRID, CLEO III)
- Solid photocathodes: Csl (HADES, COMPASS, ALICE, JLAB-HALL A, PHENIX)

Si PDs

Silicon PMs (first tests only recently)

NDIP 2008, 19/06/2008 - Aix – Les - Bains

PID FOR HIGH MOMENTA AND WIDE ANGULAR ACCEPTANCE NEEDS

LARGE SENSITIVE AREAS \leftrightarrow GASEOUS PDs

- photoconverting vapours are no longer in use, a part CLEO III (rates ! time resolution !)
- the present is represented by MWPC (open geometry!) with Csl
 - the first prove (in experiments !) that coupling solid photocathodes and gaseous detectors works
 - Severe recovery time (~ 1 d) after detector trips
 - Aging
 - Moderate gain: < 10⁵ (effective gain: <1/2)

The way to the future: <u>ion blocking geometries</u>

- GEM/THGEM allow for multistage detectors
 - □ With THGEMs: High overall gain ↔ pe det. efficiency!
 - Good ion blocking (up to IFB at a few % level)
 - MHSP: IFB at 10⁻⁴ level
- opening the way to gaseous detectors with solid photocathodes for visible light
- First step in this direction: PHENIX HBD

ion feedback \rightarrow

Csl ion

Performance limitations of MWPC with CsI

- MWPCs with Csl photocathodes in COMPASS: beam off: stable operation up to > 2300 V beam on: stable operation only up to ~2000 V (in spill → ph. flux: 0 - 50 kHz/cm², mip flux: ~1 kHz/cm²)
 Whenever a severe discharge happens, recovery takes ~1 day Similar behavior reported from JLAB Hall-A
- **2)** Photocathode aging:
 - our information from accidental contamination
 - detailed study by Alice team

Few months after the end of the run wires 9 accidental exposure to air of one CsI cathode 9 . . accumulated highest photon flux region charge:~ 1 mC/pad

CsI surface at microscope (x 1000)

Aging effect from ion bombardment (Alice HMPID)

H. Hoedlmoser et al., NIM A 574 (2007)28; H. Hoedlmoser, CERN-THESIS-2006-004

NDIP 2008, 19/06/2008 - Aix - Les - Bains

8

Why do we try with THGEMs and reflective photocathode?

No need of high space resolution (> 1 mm)

Large area coverage (5.5 m² for COMPASS RICH)

- industrial production
- stiffness
- robust against discharge damages

For reflective photocathodes,

-no need to keep the window at a fixed potential ($2nm Cr \rightarrow -20\%$)

-possibility of windowless geometry

-higher effective QE (larger pe extraction probability)

→small photoconversion dead zones (<20%; GEM ~ 40%) Large gain

THE RELEVANCE OF HIGH GAINS

1.5

2

2.5

400

• \mathbf{Signal}^{45} signal amplitude follows Polya distribution:

5

EXAMPLES OF THGEMS

A MULTIPARAMETER SPACE TO EXPLORE !

4 geometrical parameters: diameter pitch rim thickness

material + production procedure

EXAMPLES OF THGEMS

A MULTIPARAMETER SPACE TO EXPLORE !

4 geometrical parameters: diameter pitch rim thickness

material + production procedure

A different THEENIS characterized so far

D=0.3 mm Pitch=0.7 mm Rim=0.1 mm Thick=0.4mm

CHARACTERIZATION DRIFT

small prototypes – active surface (30 x 30) mm²

1 THGEM layer for this activity

Ar/CO₂ 70/30

GAIN STABILITY

GAIN STABILITY

this effect is seen in GEM's:

2007 IEEE Nuclear Science Symposium Conference Record

MP5-3

gain variations Understanding the gain characteristics of GEMs are related to the inside the Hadron Blind Detector in PHENIX. dielectric surface W. Anderson, B. Azmoun, C.-Y. Chi, Z. Citron, A. Dubey, J. M. Durham, Z. Fraenkel, T.Hemmick, J. Kamin, A. Kozlov, A.Milov, M. Naglis, R. Pisani, I. Ravinovich, T. Sakaguchi, D. Sharma, A. Sickles, I. Tserruya, C. Woody Gain Saturation Curve (Fess), dV/GEM = 484V 2006 Production 2007 Production 5000 4000 3000 2000 1000 10 12 time (hours)

Fig. 11. Gain as a function of time after HV was on for 3 days. Red points are for a GEM stack comprised of GEMs produced in 2006; blue points are for a stack of 2007 GEMs.

Fig. 12. GEM holes viewed under a microscope. 2006 production GEMs are shown above; 2007 production GEMs are below.

ARE THGEM DEVICES FOR HIGH RATERS ?

NDIP 2008, 19/06/2008 Aix – Les - Bains **Fulvio TESSAROTTO**

Monitoring currents during an "induction scan"

(A. Braem, C. David, M. van Stenis)

Γ BEAM SET-UP AALL PROTOTYPES

Perspectives

Short term plans:

- optimize the parameters of the THGEM with photoconverting CsI layer to achieve maximum photoelectron collection efficiency
- optimize the parameters for the (double) THGEM to be used for the amplification of the signal to provide large and stable gain
- produce a set of 300 x 300 mm² THGEMs to be individually tested, selected and glued on thin 600 x 600 mm² (stesalit) frames
- assemble and test a first complete "full size" prototype chamber
- **Possible medium term project:**
 - Upgrade of COMPASS RICH (~4m²) with the new photon detectors in case the COMPASS Collaboration decides for it.

Longer term dream:

- find a configuration to reduce the ion back-flow down to <10⁻⁵
and operate this large area detectors with visible photoconverter

27

Conclusions

- A third generation of gaseous Photon Detectors for RICH applications, based on micropattern gas detectors, is expected to overcome the performance limits of MWPC's coupled with CsI photocathodes.
- THGEM seem to be very promising: they are stiff, robust and suitable for industrial production; they are expected to provide high gain, small dead areas and very good photoelectron collection efficiencies.
- An effort to characterize these novel detectors has started with the aim to optimize geometrical parameters, production procedures and working conditions for large area coverage.
- A full size 600 x 600 mm² prototype will be produced, assembled and tested in the incoming months.

Thanks to the help from many colleagues...

M. Alexeev^a, R. Birsa^b, F. Bradamante^c, A. Bressan^c, M. Chiosso^d, P. Ciliberti^c, G. Croci^e, M. Colantoni^f, S. Dalla Torre^b, S. Duarte Pinto^e, O. Denisov^f, V. Diaz^b, N. Dibiase^d, V. Duic^c, A. Ferrero^d, M. Finger^g, M. Finger Jr^g, H. Fischer^h,G. Giacominiⁱ,b, M. Giorgi^c, B. Gobbo^b, R. Hagemann^h, F. H. Heinsius^h, K. Königsmann^h, D. Kramer^j, S. Levorato^c, A. Maggiora^f, A. Martin^c, G. Menon^b, A. Mutter^h, F. Nerling^h, D. Panzieri^a, G. Pesaro^c, J. Polak^b,j, E. Rocco^d, L. Ropelewski^e, P. Schiavon^c, C. Schill^h, M. Slunecka^j, F. Sozzi^c, L. Steiger^j,M. Sulc^j, M. Svec^j, S. Takekawa^c, F. Tessarotto^b, H. Wollny^h

- a INFN, Sezione di Torino and University of East Piemonte, Alessandria, Italy
- b INFN, Sezione di Trieste, Trieste, Italy
- c INFN, Sezione di Trieste and University of Trieste, Trieste, Italy
- d INFN, Sezione di Torino and University of Torino, Torino, Italy
- e CERN, European Organization for Nuclear Research, Geneva, Switzerland
- f INFN, Sezione di Torino, Torino, Italy
- g Charles University, Prague, Czech Republic and JINR, Dubna, Russia
- h Universität Freiburg, Physikalisches Institut, Freiburg, Germany
- i University of Bari, Bari, Italy
- j Technical University of Liberec, Liberec, Czech Republic