Photodetectors for Nuclear Medical Imaging

William W. Moses Lawrence Berkeley National Laboratory Department of Functional Imaging June 20, 2008

Outline:

- Overview of Nuclear Medicine
- Current SPECT & PET Instrumentation
- Potential for New Photodetectors

This work was supported in part by the U.S. DOE (contract No. DE-AC03-76SF00098) and in part by the NIH (NIBIB grants No. R33-EB001928 & R01-EB006085).

Photodetector Technologies

High Quantum Efficiency PMTs

Gain ~10⁶, 35%–50% QE (instead of 25%).

APDs

Si device, gain ~10², small pixels, QE > 90%.

Hybrid Photodiodes (HPDs)

Gain 10⁴–10⁶, 25% QE, *very* uniform gain, good single p.e. resolution, can be pixellated.

Silicon Photomultipliers (SiPMs)

Si devices, gain ~10⁶, small pixels, good single p.e. resolution, QE up to ~40%.

Nuclear Medicine

Gamma

Camera

- Patient injected with *small* amount of radioactive drug.
- Drug localizes in patient according to metabolic properties of that drug.
- Radioactivity decays, emitting gamma rays.
- Gamma rays that exit the patient are imaged.

•Well Established Clinical Technique •10 Million Studies Annually

Single Photon Emission Computed Tomography (SPECT)

- One, two, or three imaging heads (cost / performance tradeoff)
- Direction of gamma defined by mechanical (parallel hole) collimators.
- Multiple views obtained by rotating the imaging heads around the patient.

Images 140 keV Photons

Positron Emission Tomography (PET)

- Radionuclide decays by emitting a positron (β⁺).
- β⁺ annihilates with e⁻ from tissue, forming back-to-back
 511 keV photon pair.
- 511 keV photon pairs detected via time coincidence.
- Positron lies on line defined by detector pair.

Detects Pairs of Back-to-Back 511 keV Photons No Collimator Needed Much Higher Efficiency

Research

High Spatial Resolution (small animal) MRI Compatible Depth-of-Interaction Time-of-Flight (PET only)

Commercial

Stability Cost / Unit Area ⇒ Cover ~0.5 m² @ \$2 / cm² (SPECT) \$16 / cm² (PET)

How Can New Phototdetectors Satisfy These Desires?

Starting Point for SPECT Detector: "Anger Camera"

Position Measured by PMT Analog Signal Ratio

SPECT Collimator Tradeoffs

Collimator Dominates Spatial Resolution & Efficiency

SPECT Detector Requirements

At 140 keV:

- High Efficiency (>85%)
- Good Energy Resol. (<15 keV fwhm)
- High Spatial Resol. (<4 mm)
- Low Cost (<\$15/cm²)
- "Short" Dead Time (<2000 μs cm²)

Based on Existing "Anger Cameras"

*Image courtesy of L. Shao, Philips Medical Systems

How Can Photodetectors Improve SPECT?

- Spatial Resolution?
 - No limited by collimator
- Efficiency?
 - No limited by collimator
- Dead Time?
 - No limited by collimator
- Energy Resolution?
 - No limited by scintillator
- Cost?
 - Possibly high QE PMTs
- Stability?
 - Possibly HPDs

Not Many Possibilities...

High Quantum Efficiency PMTs

+ High Quantum Efficiency (>50% reported)
 + Just Like Conventional PMTs, but Higher QE
 - Higher Dark Count Rate
 - Cost

- Higher QE PMT
 → More Photons Detected
- Intrinsic Resolution ∞ Pixel Size / $\sqrt{#}$ Photons
- PMT Cost ~Independent of PMT Diameter

Get Same Spatial Resolution with Fewer High QE PMTs

Hybrid Photomultiplier Tubes (HPDs)

+ Single Photon Counting, Very Narrow Single PE Peak – Large Dead Area, Lower Gain than PMT

- Anger Decoding (Positioning) Depends Strongly on Photodetector Gain
- Conventional PMTs are Notorious for Gain Drift
- Frequent Calibrations Required (~Weekly)

HPD Stability VERY Attractive
 HPD Cost & Dead Area Are Potential Problems

Hybrid Photodetectors

Potential Applications

- Improve Stability for Clinical SPECT (calibrate once at the factory)
- Improve Stability for Clinical PET (calibrate once at the factory)

Possible Drawbacks

- Cost per Unit Area Unlikely To Be Competitive
- Large Dead Area

Drawbacks Will Be Difficult to Overcome...

Starting Point for PET Detector: "Block Detector Module"

Good Performance, Inexpensive, Easy to Pack

Crystal Identification with Anger Logic

Y-Ratio

Profile

Row 2

through

- Uniformly illuminate block.
- For each event, compute X-Ratio and Y-Ratio, then plot 2-D position.
- Individual crystals show up as dark regions.
- Profile shows overlap (i.e. identification not perfect).

Can Decode 64 Crystals with BGO, 169 with LSO

Conventional PET Detector Requirements

*Image courtesy of M. Casey, CPS Innovations

At 511 keV:

- High Efficiency (>85%)
- High Spatial Resolution (<5 mm)
- Low Cost (<\$100/cm²)
- Short Dead Time (<1 μs cm²)
- Good Timing Resolution (<5 ns fwhm)
- Good Energy Resolution (<100 keV fwhm)

Based on BGO or LSO "Block Detector"

Small Animal PET

microPET II

17,640 LSO crystals (0.95x0.95x12.5 mm) 15 cm ring diameter 8 cm transverse FOV 4.9 cm axial FOV ~1.2 mm resolution ~2.5% sensitivity

UCDAVIS

Detector Module for Small Animal Camera

4 PMTs ⇒ Multi-Anode PMT
 Current Division Mimics Anger Logic
 Dead Area ⇒ Light Guides Couple PMT to Crystals

How Can Photodetectors Improve PET?

- Spatial Resolution?
 - Yes high QE PMTs, APDs, SiPMs
- Efficiency?
 - Possibly APDs, SiPMs
- Timing Resolution?
 - Yes high QE PMTs, SiPMs
- Energy Resolution?
 - No limited by scintillator
- Cost?
 - Possibly high QE PMTs
- Stability?
 - Possibly HPDs

Many Possibilities...

High Quantum Efficiency PMTs

Decode More Crystals ⇒ Improve Spatial Resolution
 Larger PMT ⇒ Reduce Cost?

Time-of-Flight in PET

- Can localize source along line of flight.
- Time of flight information reduces noise in images.
- Time of flight cameras built in the 80's with BaF₂ and CsF.
- These scintillators forced compromises that prevented TOF from flourishing.
- New scintillators (LSO & LaBr₃) have resurrected TOF PET.

Variance Reduction Given by 2D/c∆t 600 ps Timing Resolution ⇒ 4x Reduction in Variance!

High Quantum Efficiency PMTs

Increased QE ⇒ Better Timing Resolution
 Valuable for Time-of-Flight PET

High Quantum Efficiency PMTs

Potential Applications

- Reduce Cost in Clinical SPECT & PET (get same spatial resolution w/ fewer PMTs)
- Improve Timing Resolution for TOF PET (higher initial photoelectron rate)

Possible Drawbacks

Cost per Unit Area May Not Be Competitive

It All Depends on the Cost / Area...

Avalanche Photodiode Arrays

Hamamatsu Photonics

+ High Quantum Efficiency (90% Possible)
 + Small Pixels (Individually Couple to Crystals)
 + Compact, Insensitive to Magnetic Fields

 - Large Dead Area
 - Lower Gain than PMT
 - Poor Signal to Noise Ratio, Noise Scales w/ Area
 - Reliability & Cost, # of Electronics Channels

Simultaneous PET/MRI

- Combine Anatomic Information from MRI w/ Functional Information from PET
- Need Phototdetectors that are Insensitive to B Fields
- Desired for Both Human and Small Animal

Several Prototype PET/MRI Cameras Built Using APDs

Simultaneous PET/MRI

Rat

PET Merged **MRI**

Human Brain / Animal PET/MRI Camera Using APDs

Radial Elongation

- Penetration of 511 keV photons into crystal ring blurs measured position.
- Blurring worsens as detector's attenuation length increases.
- Projection Also known as Parallax Error or Radial Astigmatism.
 - Can be removed (in theory) by measuring depth of interaction.

Depth-Encoding PET Detector Module

Image of Collimated Gamma Rays

PMT Provides Timing Pulse PD Array Identifies Crystal of Interaction PD+PMT Provides Energy Discrimination PD / (PD+PMT) Measures Depth of Interaction

Key Photodetector Feature is Compactness

Typical APD Module Readout

- •Channels Are Independent
- •High Rate
- •Minimum Noise (Low C, Low I)
- •Complex Readout (thresholding, nearest neighbors, multi-hit rejection, etc.)

Disadvantages:

- High # Channels (∞ linear_dim²)
- High Connection Density
- High Power
 Consumption
- Complex Readout

Individual Amplifiers for Each Pixel
 Necessary to Minimize Noise
 Can Do Current Division After Amplifiers

Position-Sensitive APD (PSAPD)

15% fwhm Energy Resolution 3 ns fwhm Timing Resolution

Similar to APD Array Read Out with Current Division Cooling Often Needed to Reduce Noise

*Data and image courtesy of K. Shah, RMD, Inc.

APDs & PSAPDs

Potential Applications

- Simultaneous PET/MRI (insensitive to magnetic fields)
- Depth of Interaction for Clinical PET (measure light ratio on both ends of crystal)
- Depth of Interaction for Animal or Breast PET (measure light ratio on both ends of crystal)
- Possible Drawbacks
 - Cost per Unit Area May Not Be Competitive
 - Tradeoff Between Number of Electronics Channels and Signal-to-Noise Ratio

• Worse Timing Resolution than PMT

Already Incorporated in Some Cameras
 May Be Replaced By Other Technologies?

Silicon Photomultipliers (SiPMs)

+ High Quantum Efficiency (~40% Possible)
+ Small Pixels (Individually Couple to Crystals)
+ Insensitive to Magnetic Fields
+ Good Stability?
- Large Dead Area
- Reliability & Cost, # of Electronics Channels
- Scale-Up to Large Areas Difficult

Issues:

- Dark Count Rate High, Proportional to Area
- Capacitance High, Proportional to Area
- ⇒ 1x1 mm Common, 3x3 mm Rare, None >4x4 mm
- Very Few Monolithic Arrays

If PET Only Required a Single Pixel, SiPMs Would Be Commonly Used Today...

Readout Electronics For SiPMs

Individual Pixel Readout?

- •~50k Scintillator Pixels / Camera
- 100 mW / ADC \Rightarrow 5 kW / Camera
- •Lots of Connections / Packaging Issues

Current Division Readout?

- Large C & Division Resistors Degrades Timing
- •Use On-Device Electronics to Buffer?

Not Impossible, But Needs Serious Thought!

+ Continuous Xtal Reduces Dead Volume & Handling
 + 1–2 mm Resolution w/ 5–10 mm Thick Slab
 + With High QE Photodetector, Increase to 25 mm thick?
 + Width of Light Distribution Measures DOI

*Images courtesy of S. Tavernier, Vrije Univ.

What SiPM Advances Are Necessary Before They Are Used for PET? (In Order of Decreasing Importance)

Scale Up Area

- Whole-Body PET Camera has 50k crystals, each 4x4 mm \Rightarrow 800k 1 mm² pixels
- Minimum Package Size 2.5 cm x 2.5 cm (monolithic or hybrid)
- Minimum Pixel Size 3 mm x 3 mm (4 mm x 4 mm preferable)

Practical Readout Electronics

- "Anger Logic" without severe performance drawbacks
- •Low power individual channel (implies ASIC + packaging)
- On-sensor CMOS

What SiPM Advances Are Necessary Before They Are Used for PET II? (In Order of Decreasing Importance)

Stabilize Output

- Cannot have photopeak drift with time ⇒ Product of PDE and Gain is constant
- Inherent Stability
- Calibration (temperature sensor w/ data correction)
- Active Feedback (temperature sensor w/ bias V adjust)

Reduce Cost

- \$??? / cm² APD Array
- \$150 / cm² Multi-Anode PMT
- \$15 / cm² Conventional PMT

What SiPM Advances Are Necessary Before They Are Used for PET III? (In Order of Decreasing Importance)

Increase Photon Detection Efficiency

- SNR meets present specifications w/ ~10% PDE
- Imagine what you can do with 90% QE!!!

Dark Count Rate (Not Really Important)

Adequate SNR at 1 MHz / cm² — little gain from reduction

Saturation

- "True" 511 keV photopeak position & width unimportant
- Scatter rejected with window placed on either side of photopeak

High QE PMTs

- Several Potential Benefits
- Limiting Factor Will Be Cost

SiPMs

- MANY Potential Uses
- Significant Technical Challenges Must Be Overcome First
- Challenges Are Not Fundamental CAN Be Solved