Photodetectors for Nuclear Medical Imaging

William W. Moses
Lawrence Berkeley National Laboratory
Department of Functional Imaging
June 20, 2008

Outline:

• Overview of Nuclear Medicine
• Current SPECT & PET Instrumentation
• Potential for New Photodetectors

This work was supported in part by the U.S. DOE (contract No. DE-AC03-76SF00098) and in part by the NIH (NIBIB grants No. R33-EB001928 & R01-EB006085).
Needs & Technologies

PET
SPECT
MRI Compatible
Stability
Small Animal
Time-of-Flight
Cost
Depth-of-Interaction

High QE PMTs
APDs
PSAPDs
HPDs
SiPMs

Linkage is Complex…
Photodetector Technologies

High Quantum Efficiency PMTs
Gain $\sim 10^6$, 35%–50% QE (instead of 25%).

APDs
Si device, gain $\sim 10^2$, small pixels, QE > 90%.

Hybrid Photodiodes (HPDs)
Gain 10^4–10^6, 25% QE, very uniform gain, good single p.e. resolution, can be pixellated.

Silicon Photomultipliers (SiPMs)
Si devices, gain $\sim 10^6$, small pixels, good single p.e. resolution, QE up to $\sim 40%$.
Nuclear Medicine

- Patient injected with *small* amount of radioactive drug.
- Drug localizes in patient according to metabolic properties of that drug.
- Radioactivity decays, emitting gamma rays.
- Gamma rays that exit the patient are imaged.

Well Established Clinical Technique
10 Million Studies Annually
Single Photon Emission Computed Tomography (SPECT)

- One, two, or three imaging heads (cost / performance tradeoff)
- Direction of gamma defined by mechanical (parallel hole) collimators.
- Multiple views obtained by rotating the imaging heads around the patient.

Images 140 keV Photons
• Radionuclide decays by emitting a positron (β^+).
• β^+ annihilates with e^- from tissue, forming back-to-back 511 keV photon pair.
• 511 keV photon pairs detected via time coincidence.
• Positron lies on line defined by detector pair.

- Detects Pairs of Back-to-Back 511 keV Photons
- No Collimator Needed \implies Much Higher Efficiency
Desires

Research
High Spatial Resolution (small animal)
MRI Compatible
Depth-of-Interaction
Time-of-Flight (PET only)

Commercial
Stability
Cost / Unit Area
⇒ Cover ~0.5 m² @ $2 / cm² (SPECT)
$16 / cm² (PET)

How Can New Photodetectors Satisfy These Desires?
Starting Point for SPECT Detector: “Anger Camera”

Position Measured by PMT Analog Signal Ratio

Typical “Intrinsic” Resolution:
- 3.5 mm fwhm spatial
- 10% fwhm energy

3" PMT 3" PMT 3" PMT

Nal:TI

3/8" — 1/2"
SPECT Collimator Tradeoffs

Resolution = \(2 \frac{w}{L} \left(d + \frac{L}{2} \right)\)

Efficiency \(\propto \left(\frac{w}{L} \right)^2\)

Typical Values:
- \(w = 2\) mm
- \(L = 30\) mm
- \(t = 0.25\) mm

Resol. (@5 cm) = 6 mm
Efficiency = 0.02%
SPECT Detector Requirements

Based on Existing “Anger Cameras”

- High Efficiency (>85%)
- Good Energy Resol. (<15 keV fwhm)
- High Spatial Resol. (<4 mm)
- Low Cost (<$15/cm²)
- “Short” Dead Time (<2000 μs cm²)

At 140 keV:

- Scintillator Crystal (NaI:Tl, 50 cm square x 1 cm thick)
- Photomultiplier Tubes (~50 / head)

*Image courtesy of L. Shao, Philips Medical Systems
How Can Photodetectors Improve SPECT?

- **Spatial Resolution?**
 No — limited by collimator

- **Efficiency?**
 No — limited by collimator

- **Dead Time?**
 No — limited by collimator

- **Energy Resolution?**
 No — limited by scintillator

- **Cost?**
 Possibly — high QE PMTs

- **Stability?**
 Possibly — HPDs

Not Many Possibilities…
High Quantum Efficiency PMTs

- High Quantum Efficiency (>50% reported)
- Just Like Conventional PMTs, but Higher QE
 - Higher Dark Count Rate
 - Cost
How Can SPECT Cost Be Reduced?

• Higher QE PMT ⇒ More Photons Detected
• Intrinsic Resolution \propto Pixel Size / $\sqrt{\# \text{ Photons}}$
• PMT Cost \sim Independent of PMT Diameter

Get Same Spatial Resolution with Fewer High QE PMTs
Hybrid Photomultiplier Tubes (HPDs)

Hamamatsu Photonics

R9792U-40

Photocathode

PIN or APD Array

10 kV

3.6 eV per e/h
\[\Rightarrow \text{Gain} \approx 3000 \times \text{PIN/APD Gain} \]

+ Pixellated, Gain is Very Stable
+ Single Photon Counting, Very Narrow Single PE Peak
- Large Dead Area, Lower Gain than PMT
Can Stability Be Improved?

- Anger Decoding (Positioning) Depends Strongly on Photodetector Gain
- Conventional PMTs are Notorious for Gain Drift
- Frequent Calibrations Required (~Weekly)

- HPD Stability VERY Attractive
- HPD Cost & Dead Area Are Potential Problems
Hybrid Photodetectors

Potential Applications

• Improve Stability for Clinical SPECT (calibrate once at the factory)
• Improve Stability for Clinical PET (calibrate once at the factory)

Possible Drawbacks

• Cost per Unit Area Unlikely To Be Competitive
• Large Dead Area

Drawbacks Will Be Difficult to Overcome...
Starting Point for PET Detector:
“Block Detector Module”

- Saw cuts direct light toward PMTs.
- Depth of cut determines light spread at PMTs.
- Crystal of interaction found with Anger logic (i.e. PMT light ratio).

4 PMTs (25 mm square)

Scintillator Crystal Block
(BGO ⇒ 8x8 array, 6 mm square xtal
LSO ⇒ 13x13 array, 4 mm square xtal)

Good Performance, Inexpensive, Easy to Pack
Crystal Identification with Anger Logic

- Uniformly illuminate block.
- For each event, compute X-Ratio and Y-Ratio, then plot 2-D position.
- Individual crystals show up as dark regions.
- Profile shows overlap (i.e. identification not perfect).

Can Decode 64 Crystals with BGO, 169 with LSO
Conventional PET Detector Requirements

- High Efficiency (>85%)
- High Spatial Resolution (<5 mm)
- Low Cost (<$100/cm²)
- Short Dead Time (<1 µs cm²)
- Good Timing Resolution (<5 ns fwhm)
- Good Energy Resolution (<100 keV fwhm)

Based on BGO or LSO “Block Detector”

*Image courtesy of M. Casey, CPS Innovations
Small Animal PET

microPET II

- 17,640 LSO crystals (0.95x0.95x12.5 mm)
- 15 cm ring diameter
- 8 cm transverse FOV
- 4.9 cm axial FOV
- ~1.2 mm resolution
- ~2.5% sensitivity
Detector Module for Small Animal Camera

- 4 PMTs ➔ Multi-Anode PMT
- Current Division Mimics Anger Logic
- Dead Area ➔ Light Guides Couple PMT to Crystals

Scintillator Crystals (1–2 mm square)

Flood Map

14x14 Crystals
1 mm square x 12.5 mm
How Can Photodetectors Improve PET?

- **Spatial Resolution?**
 - Yes — high QE PMTs, APDs, SiPMs

- **Efficiency?**
 - Possibly — APDs, SiPMs

- **Timing Resolution?**
 - Yes — high QE PMTs, SiPMs

- **Energy Resolution?**
 - No — limited by scintillator

- **Cost?**
 - Possibly — high QE PMTs

- **Stability?**
 - Possibly — HPDs

Many Possibilities…
High Quantum Efficiency PMTs

16x16 LSO Crystals

- Decode More Crystals ⇒ Improve Spatial Resolution
- Larger PMT ⇒ Reduce Cost?
Time-of-Flight in PET

- Can localize source along line of flight.
- Time of flight information reduces noise in images.
- Time of flight cameras built in the 80’s with BaF$_2$ and CsF.
- These scintillators forced compromises that prevented TOF from flourishing.
- New scintillators (LSO & LaBr$_3$) have resurrected TOF PET.

\[c = 30 \text{ cm/ns} \]

500 ps timing resolution \(\Rightarrow \) 7.5 cm localization

\[\Delta t \]

- Variance Reduction Given by \(2D/c\Delta t \)
- 600 ps Timing Resolution \(\Rightarrow \) 4x Reduction in Variance!
High Quantum Efficiency PMTs

- Increased QE \Rightarrow Better Timing Resolution
- Valuable for Time-of-Flight PET

$I(t) = I_0 \exp(-t/\tau)$

Timing Resolution $\propto 1/\sqrt{I_0}$
High Quantum Efficiency PMTs

Potential Applications

• Reduce Cost in Clinical SPECT & PET (get same spatial resolution w/ fewer PMTs)
• Improve Timing Resolution for TOF PET (higher initial photoelectron rate)

Possible Drawbacks

• Cost per Unit Area May Not Be Competitive

It All Depends on the Cost / Area…
Avalanche Photodiode Arrays

- High Quantum Efficiency (90% Possible)
- Small Pixels (Individually Couple to Crystals)
- Compact, Insensitive to Magnetic Fields
 - Large Dead Area
 - Lower Gain than PMT
- Poor Signal to Noise Ratio, Noise Scales w/ Area
- Reliability & Cost, # of Electronics Channels
Simultaneous PET/MRI

- Combine Anatomic Information from MRI w/ Functional Information from PET
- Need Phototdetectors that are Insensitive to B Fields
- Desired for Both Human and Small Animal

Several Prototype PET/MRI Cameras Built Using APDs
Simultaneous PET/MRI

Human Brain / Animal PET/MRI Camera Using APDs
Radial Elongation

- Penetration of 511 keV photons into crystal ring blurs measured position.
- Blurring worsens as detector’s attenuation length increases.
- Also known as Parallax Error or Radial Astigmatism.
- Can be removed (in theory) by measuring depth of interaction.
Depth-Encoding PET Detector Module

- PMT Provides Timing Pulse
- PD Array Identifies Crystal of Interaction
- PD+PMT Provides Energy Discrimination
- PD / (PD+PMT) Measures Depth of Interaction

Key Photodetector Feature is Compactness
Typical APD Module Readout

Advantages:
- Channels Are Independent
- High Rate
- Minimum Noise (Low C, Low I)
- Complex Readout (thresholding, nearest neighbors, multi-hit rejection, etc.)

Disadvantages:
- High # Channels (\propto linear_dim2)
- High Connection Density
- High Power Consumption
- Complex Readout

- Individual Amplifiers for Each Pixel
- Necessary to Minimize Noise
- Can Do Current Division After Amplifiers
Position-Sensitive APD (PSAPD)

- 28 mm LSO Array

Flood Map,
–20° C

- 15% fwhm Energy Resolution
- 3 ns fwhm Timing Resolution

- Similar to APD Array Read Out with Current Division
- Cooling Often Needed to Reduce Noise

Data and image courtesy of K. Shah, RMD, Inc.
APDs & PSAPDs

Potential Applications

• Simultaneous PET/MRI (insensitive to magnetic fields)
• Depth of Interaction for Clinical PET (measure light ratio on both ends of crystal)
• Depth of Interaction for Animal or Breast PET (measure light ratio on both ends of crystal)

• Possible Drawbacks

• Cost per Unit Area May Not Be Competitive
• Tradeoff Between Number of Electronics Channels and Signal-to-Noise Ratio
• Worse Timing Resolution than PMT

• Already Incorporated in Some Cameras
• May Be Replaced By Other Technologies?
Silicon Photomultipliers (SiPMs)

+ High Quantum Efficiency (~40% Possible)
+ Small Pixels (Individually Couple to Crystals)
 + Insensitive to Magnetic Fields
 + Good Stability?
 – Large Dead Area
– Reliability & Cost, # of Electronics Channels
 – Scale-Up to Large Areas Difficult

Bias

20% fwhm Energy Resolution

\[\chi^2 / \text{ndf} = 24.38 / 33 \]

Constant: 664 ± 7.0
Mean: 1.248 ± 0.001
Sigma: 1.007 ± 0.001

Energy Resolution
Scale Up In Area

Issues:
• Dark Count Rate High, Proportional to Area
• Capacitance High, Proportional to Area
⇒ 1x1 mm Common, 3x3 mm Rare, None >4x4 mm
• Very Few Monolithic Arrays

If PET Only Required a Single Pixel, SiPMs Would Be Commonly Used Today…
Readout Electronics For SiPMs

Individual Pixel Readout?
- ~50k Scintillator Pixels / Camera
- 100 mW / ADC $\Rightarrow 5$ kW / Camera
- Lots of Connections / Packaging Issues

Current Division Readout?
- Large C & Division Resistors Degrades Timing
- Use On-Device Electronics to Buffer?

Not Impossible, But Needs Serious Thought!
Improve PET Efficiency

+ Continuous Xtal Reduces Dead Volume & Handling
 + 1–2 mm Resolution w/ 5–10 mm Thick Slab
+ With High QE Photodetector, Increase to 25 mm thick?
+ Width of Light Distribution Measures DOI

Images courtesy of S. Tavernier, Vrije Univ.
What SiPM Advances Are Necessary Before They Are Used for PET? (In Order of Decreasing Importance)

Scale Up Area

- Whole-Body PET Camera has 50k crystals, each 4x4 mm ⇒ 800k 1 mm² pixels
- Minimum Package Size 2.5 cm x 2.5 cm (monolithic or hybrid)
- Minimum Pixel Size 3 mm x 3 mm (4 mm x 4 mm preferable)

Practical Readout Electronics

- “Anger Logic” without severe performance drawbacks
- Low power individual channel (implies ASIC + packaging)
- On-sensor CMOS
What SiPM Advances Are Necessary Before They Are Used for PET II? (In Order of Decreasing Importance)

Stabilize Output

- Cannot have photopeak drift with time
 ⇒ Product of PDE and Gain is constant
- Inherent Stability
- Calibration (temperature sensor w/ data correction)
- Active Feedback (temperature sensor w/ bias V adjust)

Reduce Cost

- $?? / cm² APD Array
- $150 / cm² Multi-Anode PMT
- $15 / cm² Conventional PMT
What SiPM Advances Are Necessary Before They Are Used for PET III?
(In Order of Decreasing Importance)

Increase Photon Detection Efficiency

• SNR meets present specifications w/ ~10% PDE
• Imagine what you can do with 90% QE!!!

Dark Count Rate (Not Really Important)

• Adequate SNR at 1 MHz / cm² — little gain from reduction

Saturation

• “True” 511 keV photopeak position & width unimportant
• Scatter rejected with window placed on either side of photopeak
Conclusion

High QE PMTs
- Several Potential Benefits
- Limiting Factor Will Be Cost

SiPMs
- MANY Potential Uses
- Significant Technical Challenges Must Be Overcome First
- Challenges Are Not Fundamental — CAN Be Solved