Large area UV SiPMs with very high PDE & extremely low cross-talk

Boris Dolgoshein¹, Razmik Mirzoyan², <u>Elena Popova¹</u>, Pavel Buzhan¹, Masahiro Teshima², Alexey Stifutkin¹, Andrey Ilyin¹, Vladimir Kaplin¹, Andrey Zhukov³

¹Moscow Engineering and Physics Institute, Moscow, Russia ²Max-Planck-Institute for Physics, Munich, Germany ³National Research University Moscow Institute of Electronic Technology

4th July 2011, NDIP-11, Lyon, France

Homage to Boris Dolgoshein (1930-2010)

- Professor, head of the particle-physics department in MEPHI
- Inventor of streamer chamber (1962)
- Developer and pioneer of Transition Radiation Detector (TRD)
- Since 1993 developing a new photon detector which he gave the name Silicon Photo-Multiplier (SiPM). Collaborating with DESY and then with Max-Planck Institute for Physics in Munich on SiPM
- 1st in the world large-scale SiPM application in Hadron Calorimeter prototype (~10⁴ SiPM channels)

Developing UV sensitive SiPM with extremely low X-talk and very high PDE for MAGIC and EUSO experiments, 2002-2010

4th July 2011, NDIP-11, Lyon, France

MEPhI - MPI for Physics R&D collaboration and cooperation with EXCELITAS (former PerkinElmer)

A test batch produced in December 2010

- SiPM Sizes
- 1x1 and 3x3 mm²
- µ-cell pitch
- 50 and 100 µm
- Geom. Eff.

40-80%

4th July 2011, NDIP-11, Lyon, France E.Popova: Large area SiPM with

very high PDE and very low X-talk

18 different modifications

3

Special features

3+ -fold X-talk suppression

A known way to suppress X-talk: 1. Isolating trenches

New ways: 2. 2nd p-n junction for isolating the bulk from the active region (patented)

3. OC suppression by ion implantation (patent pending)

4th July 2011, NDIP-11, Lyon, France

Very high UV sensitivity

Record high PDE

Geometrical efficiency 80%

Very low temperature dependence

SiPM vs. MPPC

SiPM: 1x1 mm², 100x100 μ m², Geometrical Efficiency ~80%, T=+25°C, λ = 435 nm Same light impinging on both sensors

X-talk and Excess Noise Factor

Light source variation according Poisson law

Timing with 3x3mm², type 100B SiPM

40ps laser, 405nm, single photon mode, T= -40°C

Best value measured for 3x3 mm² 100B SiPM is 205 ps

4th July 2011, NDIP-11, Lyon, France

Record high PDE (pulsed mode LED, 100B type SiPM, 1x1 mm²)

Measurements at MEPHI and

- The PDE measured with reference calibrated PIN-diodes is slightly lower than with the reference calibrated PMT
- All results are consistent within experimental errors

4th July 2011, NDIP-11, Lyon, France

Voltage stability SiPM 100B for 5V (15%) overvoltage

Temperature dependence type 100B SIPM

PET Spectrometry with LYSO and Na²²

Preliminary. Setup is not yet optimized

Timing for PET with LYSO and Na²²

LYSO 3x3x5mm3 Without collimator Preliminary. Setup is not yet optimized

Summary

- MEPHI & MPI, with strong support of Excelitas, have produced SiPMs of 1x1 and 3x3 mm² sizes with extremely high PDE (≥ 50%) in the UV-blue region
- The X-talk is ~ 3-5 % for saturated PDE ($\Delta U/U \sim 12-15$ %)
- ENF is ~ 1.02 (due to 4-fold X-talk suppression)
- T° sensitivity: PDE ~0.2 %/°C; Gain ~0.5 %/°C
- Time jitter (FWHM) for 3x3 mm² SiPM (100 µm pitch) is ~ 200-300 ps; further improvements are possible
- Dark rate ~ 1MHz/mm²
- On the way of becoming commercial product of Excelitas

SiPM Noise

4th July 2011, NDIP-11, Lyon, France

Efficiency measurements

Spectral PDE comparison

4th July 2011, NDIP-11, Lyon, France