

Multi-time-over-threshold technique for photomultiplier signal processing Characterisation of the SCOTT ASIC

S. Ferry¹, F. Guilloux²

CEA Saclay, Irfu

and E. Delagnes², F. Louis², E. Monmarthe², J-P. Schuller¹, Th.Stolarczyk¹, B. Vallage¹, on behalf of the KM3NeT consortium³

¹IRFU/SPP, 91191 Gif/Yvette, France

² IRFU/SEDI, 91191 Gif/Yvette, France

³ Supported by the European Commission through FP6 and FP7

KM3NeT

- Now in preparatory phase (FP7)
- A European deep-sea research infrastructure for a neutrino telescope
 - Mediterranean Sea
 - Instrumented volume ~ 5 km³
 - 300 detection units
 - 12000 photo-detectors
- Cherenkov light detection
 - Upward $\nu \rightarrow \mu$
 - Downward cosmic μ
 - Optical background (100 Hz / cm⁻²)
 - ⁴⁰K decay in water
 - Bioluminescence
 - \Rightarrow Mainly single photon signals
- All data to shore
 - On shore computer farm

Front end requirements (from CDR)

- Time resolution (PMT+FE) < 2 ns at 1 pe (RMS)
- Charge dynamic range : 100 pe / 25 ns – Charge estimation
- Two-hit time separation < 25ns

\Rightarrow SCOTT ASIC

SCOTT concept

c : Digital data in the internal memory

- Time and Amplitude Sampling
 - "wave-form"-like image of the pulse
- Master Clock 50 MHz
 16 bit Time stamp
- 1.25 ns sampling
- 16 independent channels
 - Dynamic range : 0- 3V
 - 10 bit adjustable thresholds
- Auto-triggered
 - Each threshold can be a trigger
 - Handling several PMTs e.g.:
 - 2 PMTs x 8 thresholds
 - 16 PMTs x 1 threshold

lrfu

œ

saclay

Analogue switches Internal sharing of signals

10 bit DAC AMS BiCMos 0.35µm Programmable thresholds LSB<3mV Discriminator Analogue to digital convertor

5

Irfu CCCC saclay

SOC

Delay locked loop

(DLL) All channels are

synchronous

x16 channels

SOC

FIFO

Auto-triggered Logical or channel triggered

Scott output example

lrfu

œ

saclay

The SCOTT Opera

• **A***ct I* : Determination of thresholds – Which values for how many thresholds ?

- Act II : Charge
- Act III: Timing
 - Correction of the walk effect
 - SCOTT Intrinsic timing accuracy

ACT I THRESHOLD DETERMINATION

Actors

- **PMT** : Antares 10'' Gain= $3 \cdot 10^7 \Rightarrow 1 \text{ pe} \approx 50 \text{mV}$ 5pC
- LED : flashes at 1pe up to 70pe
- **Oscilloscope** : F=2.5GHz Bandwidth=500MHz

Sophie Ferry - NDIP11 - Characterisation of SCOTT

Determination of the best thresholds

Data

- Set 1 *(true)*
 - 10⁴ digitised pulses @ 2,5GHz
 - 1pe to 70pe
- Set 2 (*rec*)
 - Same pulses with "SCOTTing": Keep points at thresholds' crossing
- Optimise positions of thresholds
 - Minimise δQ and $\delta \Delta T$ with FRED : (Fast Rise Exp. Decay) $A(t) = a t^{\alpha} \exp\left(-\frac{t}{\tau}\right)$ \Rightarrow Tpeak and Charge(integral)

Best solution 1pe - 70pe : 5 thresholds
 pe: 1/3 2/3 1 3 8
 With :

 δQ = 7% (1pe)
 δΔT = 0.4ns (1pe)
 0.7ns (up to 25pe)
 Performances verified with SCOTT

Irfu CEC

ACT II CHARGE RESOLUTION

Actors

- **PMT** : Antares 10'' gain= $3.10^7 \Rightarrow 1pe \approx 50mV$ 5pC
- LED : flashes at 1pe and 11pe
- **SCOTT** : 5 thresholds

Charge estimation with Time over Threshold

- Integration of FRED : needs CPU time
- Alternative based on Time-Over-Thresholds (TOT)
 Upper (Q₊) and lower(Q₋) area under the thresholds

lrfu

œ

saclay

Charge resolution from TOTs

Charge 1pe

ACT III TIMING RESOLUTION

Scene 1 : Pulse time resolution

Actors

PMT : Antares 10'' gain= $3.10^7 \Rightarrow 1pe \approx 50mV 5pC$

LED : flashes at 1pe and 11pe

SCOTT : PMT 5 thresholds

LED trigger 1 threshold

Pulse time reconstruction

Walk effect

- Threshold crossing time depends on the charge
- Peak time T_{peak} unchanged

Tpeak from TOT

- Analytical solution with FRED

Tpeak- $T_0[i] = F(TOT[i])$

$$F = \frac{b}{X} (1 - (1 + X)e^{-X})$$
$$X = \frac{1}{\alpha \tau} \Delta t$$

Tpeak and Walk correction with SCOTT

1.5

5

No charge estimate needed

ACT III TIMING RESOLUTION

Scene 2 : SCOTT Intrinsic timing accuracy

Actors Generator: HP 81110A 330MHz SCOTT

SCOTT intrinsic timing

EVERY COUPLE of thresholds Sophie Ferry - NDIP11 - Characterisation of SCOTT

19 KN31147

lrfu CCC

saclay

Conclusion

- An ASIC for the KM3NeT neutrino telescope
 - Characterisation with an Antares 10" PMT
- Optimal thresholds using pulse analytical function
 - 5 thresholds @ 1/3 2/3 1 3 8 pe
 - -> Charge resolution 15% up to 25pe
 - -> Timing 0.7ns up to 70pe
 - ->Up to 3PMTs/SCOTT
- Charge
 - Explored up to 11pe
 - Estimation from thresholds value (TOT)
- Timing
 - Walk effect correction, pulse time $\delta t = 1.5 ns$
 - Intrinsic Timing accuracy 0.8ns

 \Rightarrow CDR requirement achieved

- Adapted to multi-PMT reading in KM3NeT
 - $30 \times 3''$ PMT = 2ASIC with 1threshold/PMT

The End

21 KM3R47

Sophie Ferry - NDIP11 - Characterisation of SCOTT

Analogue input

Analogue switches Internal sharing of signals

10 bit DAC AMS BiCMos 0.35μm Programmable thresholds LSB<3mV

> Discriminator Analogue to digital convertor

Fast memory sampling

Delay locked loop (DLL) All channels are synchronous

Circular digital memory 2 memory banks (MB) 1MB = 1 time slice = 20 ns No dead time

> 16 bit coarse time counter LSB = 20 ns

> > Time step $T_{cK}/16$ $T_{s} = 1.25ns (~ 800MHz)$

FIFO and zero suppress

Auto-triggered Logical or channel triggered

Size

32 time slices 640 ns continuous waveform Data loss <1‰ for 200 kHits/s

Double port

F_{ck} sample ≠F_{ck} readout Readout driven by System-on-Chip

Selective readout Data reduction

lrfu

œ

FRED

- Function to fit
 - Fast Rise Exp. Decay

$$A(t-t_0)^{\alpha} \exp\left(-\frac{t-t_0}{\tau}\right) \times H(t_0)$$

- Variable change

$$\hat{A}\left(\frac{t-\hat{t}}{t_R}+1\right)^{\alpha}\exp\left(-\frac{t-\hat{t}}{t_R}\propto\right)\times H(\hat{t}-t_R)$$

- H Heaviside
- \hat{t} Tpeak

–
$$\hat{A}$$
 Apeak

- t_R Trise
- α

lrfu

œ

saclay

Tpeak residuals

Irfu CEC saclay

Test bench

Generated pulse viewed with SCOTT

lrfu

œ

PMT characterisation

Define the 1PE ≈ 50 mV ≈ 5.4 pC Irfu CCCC

Amplitude with FRED & SCOTT

T1/3 versus charge

1PE and 11PE

charge (C)

Tpeak versus charge

1PE and 11PE

SCOTT + Pulse fit enable charge reconstruction without introducing further error

Sophie Ferry - NDIP11 - Characterisation of SCOTT

SCOTT data set

• 1 + 11 pe data sets

lrfu

œ

saclay

NUMBER OF STREET

Analogue to digital@ SCOTT

lrfu

œ

saclay