

NDIP conference, July 4-8 2011, Lyon, France

Light Sensor selection for Cherenkov Telescope Array

M. Shayduk, R. Mirzoyan, M.Kurz, J. Hose, H. Dickinson, M. Knoetig, J. Bolmont, E. Lorenz, T. Schweizer, J.-P. Tavernet, M. Teshima, P. Vincent

for the FPI WP of CTA

NDIP conference, July 4-8 2011, Lyon, France

Cherenkov Telescope Array

NDIP conference, July 4-8 2011, Lyon, France

VHE Ground-Based γ-ray Astronomy

1. Galactic Gamma-Ray Sources:

Supernova Remnants Pulsars, Pulsar Wind Nebulae X-Ray Binaries & Micro-quasars Star-Formation Regions The Galactic Centre

2. Extragalactic Gamma-Ray Sources:

Active Galactic Nuclei Extragalactic Background Light Gamma-Ray Bursts Galaxy Clusters

3. Fundamental Physics:

Dark Matter Quantum Gravity Charged Cosmic Rays ...

..... and more

CTA layout with different telescope sizes

Possible CTA sites

Cherenkov Telescope Array

NDIP conference, July 4-8 2011, Lyon, France

Low-Light-Level Field

Photosensor requirements:

Total needs: >1.5 x 10⁵ photosensors!

- Very high Quantum Efficiency
- Almost 100 % Collection Efficiency of photo electrons from photo cathode on the 1st dynode
- After-pulsing rate: < 0.02 % above 4 Phe (needed to lower the energy threshold)
- Pulse width: < 2 3 ns
- Transit Time Spread: \leq 1.3 ns (single photo electron)
- Stabilize photo cathode to 1st dynode voltage to ~350V
- Linear Dynamic Range > 5000 photo electrons
- About 2 years ago MPI (Max Planck Instutute) started a PMT development program with Hamamatsu (Japan) and Electron Tubes Enterprises (England)

CTA layout with different telescope sizes

FPI Main Parameter List Summary by R. Mirzoyan Original version: 16 April 2010; Next modification: 27 May 2011 Latest modification:22 June 2011 cta cherenkov telescope array FPI WP

Below is shown the wish list of the main parameters of the FPI work package:

PMT:

1. size:	1.5 inch
2. photo-cathode type:	super-bialkali
3. sensitivity range:	290 – 600 nm
4. peak QE on average:	35 %
5. average QE over Cherenkov spectrum	≥21 % (290-600) (without ph.e. CE)
6. variation of QE over entrance window	<10 %
7. 1 st dynode ph.e. collection efficiency:	≥95 % (400 nm, 30 mm diameter)
8. photo cathode to 1 st dynode HV:	≥300 V stabilized
9. 1 st dynode gain:	≥ 6
10. number of dynodes:	8
11. operating gain:	$\geq 4 \times 10^4$
12. afterpulsing for threshold \geq 4 ph.e.:	\leq 0.02 %
13. pulse width, FWHM (single ph.e.):	\leq 2.5 ns
14. transit time spread, single ph.e., rms:	1.0 - 1.3 ns acceptable (30 mm diameter)
15. single ph.e. peak/valley ratio:	≥ 1.8
16. protected from geomagnetic field:	μ-metal shield
17. dynamic range:	\geq 5000 ph.e.
18. linearity range:	\geq 5000 ph.e.
19. differential non-linearity	< 1 %

NDIP conference, July 4-8 2011, Lyon, France

Producers claim collection efficiency >90% (direct PDE measurements still needed) Quantum Efficiency curves. Dashed curve: Cherenkov radiation spectrum from 50 GeV γ-shower.

1.5 inch PMTs has been chosen as the target PMT for all 3 types of telescopes.

PMT candidates

NDIP conference, July 4-8 2011, Lyon, France

Super-bialkali (SBA) 1.5' PMTs

PMT samples within MPI-Hamamatsu-ET development program :

Hamamatsu R9420 modified (convex input window shape) (mat and polished input window types)

Hamamatsu R8619 modified Body of R9420 but used 8619 dynode system (also two window types)

Electron Tubes 9117B

FPI WP

After-Pulsing measurements

NDIP conference, July 4-8 2011, Lyon, France

Requirement for CTA: For the threshold of 4 phe $P_{AP}(>4phe) \sim 0.02 \%$ (red line)

After-Pulsing measurements

NDIP conference, July 4-8 2011, Lyon, France

After-Pulsing sources

Sources vary for different PMTs !

- AP arrival time measurements to distinguish sources
- Peaks: ions from first dynode (H+,He+,2+, CH₄+)
- Plateau caused by rest gases (low plateau = "clean" vacuum)
- ET9142B has very low AP rate with no pronounced peaks

PMT glowing

NDIP conference, July 4-8 2011, Lyon, France

Dynode system glowing

PMT irradiated by fast laser with various pulse repetition rate:

Hamamatsu R9420MOD Exposure for every picture: 1 s

NDIP conference, July 4-8 2011, Lyon, France

Dynode system glowing: Varying of applied voltage

Developed CTA PMT candidate from Hamamatsu

New name: R11920-100-01

R11920-100-01 (with HA+Mu)

R. Mirzoyan: PMT for CTA Project

TECHNICAL INFORMATION

TENTATIVE Feb. 2011

R11920-100-01

For Gamma-ray Telescope (CTA project), Fast time response, CC window 38mm (1.5 inch) Diameter, Super Bialkali Photocathode, 8-stage, Head-On Type

GENERAL

	Parameters	Ratings	Units	
Spectral Response		300 to 650	nm	
Wavelength of Maximum Response		350	nm	
Window	Material	Borosilicate glass	-	
	Shape	Concave-Convex (R26)	-	
Photocathode	Material	Super Bialkali	-	
	Minimum Effective Area	30	mm dia.	
Dynode Structure / Number of Stages		Linear Focused / 8	-	
Base		JEDEC No.B12-43 / Flying Lead Type	-	
Operating Ambient Temperature		-30 to +50	°C	
Storage Temperature		-80 to +50	°C	
Suitable Socket		E678-12A (option)	-	

MAXIMUM RATINGS (Absolute Maximum Values)

Par	ameter	Maximum Ratings	Units
Supply Voltage	Anode to Cathode	1500	v
	Cathode to 1 st Dynode	300	v
Average Anode Current		0.1	mA

CHARACTERISTICS (at 25 °C)

Para	Min.	Тур.	Max.	Unit		
Cathode Sensitivity : Lun	-	100	-	µA/lm		
Cathode Blue Sensitivity In	idex (Cs 5-58)	-	13.5	-	-	
Quantum Efficiency	at peak wavelength	32	35	-	%	
Quantum Enterency	from 300nm to 450nm	25	-	-	74	
Collection Efficiency (at 40		92 🔺		%		
1 st Dynode Gain		6	10		- /	
Anode Sensitivity : Lur	-	4	-	A/Im		
Gain	-	4x10 ⁴	-	-	1	
Single Photon counting Pea	1.8	2.5		-	1	
Anode Dark Current (after	-	5	20	nA	1	
After Pulseing (threshold 4	p.e. and Gain 4x10 ⁴ voltage)		0.05		%	1
Anode Pulse Rise Time**	-	2.3	-	ns	1	
Anode Pulse Width (FWH)	-	-	3.0	ns	1	
Electron Transit Time**	-	23	-	ns		
Transit Time Spread (FWH	-	-	1.3	ns		
Pulse Linearity (+/-2% dev	15	20	-	mA		
Life (50% drop in Gain)	200			С	1	

NOTE : Anode characteristics are measured with a voltage distribution ratio and supply voltage shown below.

(** Collection Efficiency and Time response are defined with effective area of 30 mm in diameter.)

TECHNICAL INFORMATION

TENTATIVE Feb. 2011

VOLTAGE DIVIDER AND SUPPLY VOLTAGE

Electrodes	K	Dy1		Dy2	Dy3		Dy4	Dy5		Dy6	Dy7		Dy8	Р
Ratio	300V(z	ener diode)	1		2	1		1	1	1		2	1	
Supply Voltage:	1000 V.	K: Cathode,		Dy:	Dynode,		P: A	node						

DIMENSIONAL OUTLINE AND BASING DIAGRAM

Figure 1: Dimensional Outline (Unit: mm)

This information is furnished for your Information only. No warranty, expressed or implied, is created by furnishing this information.

25mm->20mm convex window. CE improves, TTS slightly degrades. 7. Please follow 1strial wastes in

tional material may reliable. However, nge without notice.

NDIP conference, July 4-8 2011, Lyon, France

First SiPMs candidates

MEPhI - MPI samples:

- Different pitch (50µ, 100µ), p on n type
- Two SiPMs sizes: (1 & 3 mm²)
- Operation voltages 26V and 35V
- In total ~20 different types of SiPMs

Also tested:

- Hamamatsu MPPCs, 1& 3mm, S10362-11-50U
- Planning to test other types when available e.g. Philips, and other manufactures

NDIP conference, July 4-8 2011, Lyon, France

Updated SiPMs candidates

Updated MEPhI - MPI (EXCELITAS) samples:

- Type 100A and 100B
- Improved PDE in UV region
- X-Talk suppression: Trenches, second p-n junction, ion implantation...
- Measurements of type A reveal samples with high (and pretty "flat") PDE:

PDE(400nm)~40% !!!

Measurement of PDE for applied over-voltage (V-V_b)/V_b=15%

Updated prototypes Type 100A (U_b=37V): Improved UV sensitivity. 1x1mm,

NDIP conference, July 4-8 2011, Lyon, France

Updated SiPMs candidates

Updated MEPhI - MPI (EXCELITAS) samples:

- Type 100A and 100B
- Improved PDE in UV region
- X-Talk suppression: Trenches, second p-n junction, ion implantation...
- Measurements of type B reveal samples with high (and pretty "flat") PDE:

PDE(400nm)~45% !!!

Measurement of PDE for applied over-voltage (U-U_b)/U_b=15%

Updated prototypes Type 100B (U_b=37V): Improved UV sensitivity. 1x1mm,

NDIP conference, July 4-8 2011, Lyon, France

Updated SiPMs candidates

Updated MEPhI - MPI (EXCELITAS) samples:

- Type 100A and 100B
- Improved PDE in UV region
- X-Talk suppression: Trenches, second p-n junction, ion implantation...
- Measurements of type B reveal samples with high (and pretty "flat") PDE:

PDE(400nm)~45% !!!

Measurement of PDE for applied over-voltage (U-U_b)/U_b=15%

Updated prototypes Type 100B (U_b=37V): Improved UV sensitivity. 1x1mm,

NDIP conference, July 4-8 2011, Lyon, France

Updated SiPMs candidates

Updated MEPhI - MPI (EXCELITAS) samples:

- Type 100A and 100B
- Improved PDE in UV region
- X-Talk suppression: Trenches, second p-n junction, ion implantation...
- · Cross-talk measurements: Very low crosstalk of

P_{X-talk}(ΔU/U_b=14%)~ 5% !!!

Optical cross-talk versus over-voltage (U-U_b)/U_b (PDE saturates at 10-15% over-voltage)

Updated prototypes Type 100B (U_b=37V): Improved UV sensitivity. 1x1mm, Optical trenches introduced

Summary

NDIP conference, July 4-8 2011, Lyon, France

PMTs:

SiPMs:

- One may assume that it could make sense to start using SiPMs in our telescopes once their efficiency will exceed the PDE of PMTs by 1.5-2 times at comparable costs.
- SiPMs are becoming serious sensor candidates for the CTA project: PDE ($\Delta U/U_b=0.15$) ~ 50% reached for low cross-talk P_{X-talk}($\Delta U/U_b=0.14$) ~ 5% !
- Intending to evaluate all new SiPM candidate sensors
- We believe in a few years one can have high quality SiPMs from several manufacturers that can be used also in our project.

NDIP conference, July 4-8 2011, Lyon, France

PMTs:

PMT development for the needs of CTA is in progress

Summary

- Already now the PMTs of Hamamatsu came rather close to the specified target parameter values: peak PDE ~32%, After-pulsing slightly above 0.02%.
- Next two years further optimization of PMTs from both Hamamatsu and Electron Tubes Enterprises (Some financial support from CTA is foreseen)
- Design and tests of PMT-based pixels and clusters of 7-pixels

SiPMs:

- One may assume that it could make sense to start using SiPMs in our telescopes once their efficiency will exceed the PDE of PMTs by 1.5-2 times at comparable costs.
- SiPMs are becoming serious sensor candidates for the CTA project: PDE ($\Delta U/U_b=0.15$) ~ 50% reached for low cross-talk P_{X-talk}($\Delta U/U_b=0.14$) ~ 5% !
- Intending to evaluate all new SiPM candidate sensors
- We believe in a few years one can have high quality SiPMs from several manufacturers that can be used also in our project.

