High-angular-precision γ -ray astronomy and polarimetry.

From the MeV to the TeV

Denis Bernard

LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France

Alain Delbart

IRFU, CEA Saclay, Gif-sur-Yvette, France

6th Int' Conference On New Developments In Photodetection NDIP 2011, 4-8 Jul 2011, Lyon, France

$GLAST \ / \ Fermi$

Fermi LAT : 2008 – 2013 \rightarrow 2018?

 Impressive harvest on vast programe : pulsars, active galactic nuclei (AGN), gamma-ray bursts (GRB), binary stars, supernova remnants
 ...

- E_{γ} range 20 MeV 300 GeV
- 16-plane **Converter/Tracker W/Si** $(1.1X_0)$
- 8-layer Csl :Tl Calorimeter Csl :Tl $(8.6X_0)$
- Segmented scintillator cosmic-ray veto
- $1.8\,m \times 1.8\,m \times 0.7\,m$, 2.8 ton.

Fermi

– Actually Fermi is publishing mostly in the range $0.1 - 300 \,\text{GeV}$ – Effective area $\approx 1 \,\text{m}^2$ above 1 GeV

Fermi LAT Performance page

- Photon selection kills efficiency at low ${\cal E}$
 - Due to huge background at low ${\cal E}$
 - $\bullet\,$ Due to larger angular resolution at low E
- No polarimetry

Directions for a future next-to-Fermi mission

- Improve angular resolution
 - \Rightarrow Improve background rejection of pointlike sources
 - Improve $A_{\mbox{eff}}$ at low E
- Enlarge $A_{\rm eff}$ but watch mass budget !
- Have polarization sensibility

Cosmic γ -ray polarimetry : Why?

- γ Rays produced in very violent events : (AGN's, pulsars, GRB's ...)
- γ polarization fraction key ingredient to understanding mechanism at work.
 - jets of relativistic matter impinging on intra galactic matter
 - hadronic interactions $\rightarrow \pi^0$'s $\rightarrow \gamma$'s : P = 0
 - Radiative processes (synchrotron, inv Compton) : P up to 70% • Synch : Turbulence of \vec{B} "dilutes" P : measurement of turbulence.

Linear Polarization !

Modulation of the azimutal angle of the debris

– ϕ azimuthal angle

$$\frac{\mathsf{d}\Gamma}{\mathsf{d}\phi} \propto (1 + \mathcal{A}P \cos\left[2(\phi - \phi_0)\right])$$

A

Ø

X

_____Y

Photon interaction with matter

Compton

A number of hard X-Ray and soft- γ ray polarimeter projects

Low sensitivity for E > few MeV

"Nuclear" pair production : in principle

In principle : very good

- Dominates cross section at high energy
- $\mathcal{A} \approx 0.2$ at high energy

In practice :

- At low E_{γ} , a lot of multiple scattering $\Rightarrow \phi$ badly measured.
- At high E_{γ} , tight pair $\Rightarrow \phi$ badly measured.

Triplet : $\gamma e^- \rightarrow e^- e^+ e^-$

- The recoiling electron is emitted at a large angle

- Triplet / pair $\sim 1/Z$ at high energy.
- Same asymmetry at high energy.
- 6 additional Feynman diagram (wrt "Nuclear" pair production)
 - Dominated by the same two at high energy.

Satellite flight : Precision of P measurement

1 ton, 1 year, time fraction 50%, efficiency 100%, $\mathcal{A}\approx 0.2$

•
$$N_{int} = 1.5 \times 10^5$$
 on the Crab

• $2\%/\sqrt{year.ton}$

$$\sigma_P \approx \frac{1}{\mathcal{A}} \sqrt{\frac{2}{N}} \approx 0.0185$$

 $\approx Z$ -independant.

The only validation ..

Was performed :

- For nuclear pair production,
- and : at high Energy
- γ beam from Compton scattering of laser beam @ Spring-8

de Jager, et al., Eur.Phys.J.A19 :S275-S278,2004.

Our project

- Characterize the Time Projection Chmber (TPC) technology for γ astronomy and polarimetry
- 1rst measurement of \mathcal{A} at low energy.

Demonstrator :

- 30 cm cubic TPC, 5 bar, Argon-based mixture (à la T2K)
- pitch 1mm, spatial resolution 1 mm
- trigger : scintillator + WLS + PMT.

Detector Layout : 2

Al vessel, H =500 mm, Φ =500 mm

Amplication – collection – sampling

- Signal collection by strips on PCB, pitch = 1 mm
- Sampling / acquisition performed by AFTER chip

P. Baron et al., IEEE Trans. Nucl. Sci. 55 (2008) 1744.

Angular Resolution

• Black line is analytic prediction

Innes, NIM A 329, 238 (1993).

• Points are from Kalman-filter reconstruction

Frühwirth NIM A 262, 444 (1987).

Thin / Thick detectors

– Thick detector $(L \gg X_0)$

- the 3 processes (pair, triplet, Compton) are competing
 - avoid low Z (Compton dominant)
 - avoid high Z (Pair dominant over triplet)
- high conversion efficiency, $\epsilon \approx 1$, and $A_{eff} \approx S$
- important to optimize geometry (thickness) at given mass.
- Thin detector $(L \ll X_0)$:
 - the 3 processes (pair, triplet, Compton) are not competing
 - low conversion efficiency, $\epsilon \ll 1$, and $A_{eff} \approx \sigma \times M$
 - details of geometry don't matter to first order.

Effective Area

In a thin detector, $A_{\rm eff}\approx\sigma$ Ar :

@ 100 MeV : 3 m²/ton (Ar), 7 m²/ton (Xe);

Energy measurement

- Avoid calorimetry kills mass budget
- At low energy (few MeV) : contained tracks : high precision *E* measurement.
- At higher energy (< few 10 MeV) : momentum measurement from multiple scattering
- At high energy :
 - magnetic spectrometry.
 - TRD up to $\Gamma_e \approx 10^5$ (100 GeV)
 - , both thinh technologies.

Fig. 8. Average signal versus Lorentz factor for a composite radiator/detector configuration consisting of plastic foils, foam, and fibers (triangles), and for a radiator of parallel Mylar foils of 76 μ m thickness (squares). Note that the signal reaches saturation around $\gamma \approx 10^5$.

NIM A 531, 435 (2004).

General Schedule

- 2008-9 : Studies
- 2010 : Engineering design, 1rst funding.
- 2011 : Integration ; cosmic-ray characterisation of the tracker.
- 2012 : Data taking, polarized γ rays, Hyôgo, Japan.

Conclusion

A thin detector, such as a TPC, can be a telescope and a polarimeter,

- With angular resolution 1/10 smaller than the W/Si technology,
- That is a background rejection factor lower by 2 order of magn.
- An effective area $A_{\rm eff}$ of several m²/ton.
- A 4π detector
- Rejection of the (huge at low energy) γ albedo is obvious from tracking
- a TPC is a dead-time free GRB detector (but watch the deadtime of the electronics!)

Fermi might well be a the last thick and polarization insensitive γ mission ..

Thanks for your kind attention

A 10 MeV γ photon undergoing triplet conversion in argon at 5 bar (EGS5).

 $Back-up \ slides$

Measurements at SPring-8 / Subaru : 2012

Linearly polarized γ beams : Compton scattering, linearly polarized laser

– Spring-8, 8 GeV
$$e^-$$
 storage ring

• 1.5 – 2.4 GeV γ rays

Eur.Phys.J.A19 :S275-S278,2004

- New Subaru 1.5 GeV e^- storage ring
 - 2 70 MeV γ rays

Amano et al., NIM A 602 (2009) 337

Aoki et al., NIM A 516 (2004) 228

Cosmic γ -ray polarimetry : AGN's

Example : 3C279

Rept. Prog. Phys. 71, 116901 (2008)

 10^{14} 10^{13} 10^{13} 10^{13} 10^{12} 10^{11} 10^{10} 10^{9} 10^{11} 10^{10} 10^{9} 10^{11} 10^{13} 10^{15} 10^{17} 10^{19} 10^{21} 10^{23} 10^{25} v[Hz]

From left to right :

- synchrotron
- thermal from accretion disk
- SSC synchrotron-self Compton
- Compton on accreation disk photons
- Compton on photons from gas clouds

- ESC : *P* low (3 − 4 %)
- SSC : P 65 70 %
- Mon. Not. R. Astron. Soc. 395, (2009) 1507.

Cosmic gamma ray polarimetry : pulsars's

- Prediction for P model dependent. (Polar Cap 0, Outer gap medium, Slot Gap "caustic" high)
 Kaspi et al. arXiv :astro-ph/0402136.
- Here : Outer gap model

Takata et al. ApJ 670 (2007) 677

Cosmic gamma ray polarimetry : GRB's

- Origin of γ -Ray bursts : unknown (supernovae? mergers?)
- Most models involve 2 relativistic jets.
- γ emission ?
 - Synchrotron Radiation : P low
 ("efficient shock acceleration needs highly disordered magnetic fields"
 - Inverse Compton Scattering : P high

Dado, Dar, De Rujula, arXiv :astro-ph/0403015.

Our 3 preferred sources

$$\begin{array}{ccc} F(E_{\gamma} > 100 \, MeV) & \Gamma & \delta & & \mathsf{Flux} \; \mathsf{COMPTEL} \\ , ph \, cm^{-2} \, s^{-1} & & & ph \, cm^{-2} \, s^{-1} \end{array}$$

South :

Vela $(834 \pm 11) \times 10^{-8}$ 1.7 -45 $(1-30) MeV : 8 \times 10^{-5}$.

North :

Typical target : $\Gamma = 2$, $f = 1 \text{ MeV} / m^2 s$.

$$\frac{\mathrm{d}F}{\mathrm{d}E}(E) = f\frac{1}{E^2}$$

Gain

- 5 bar, 1 mm, 1250 eV \Rightarrow 62.5 mip electrons
- AFTER noise : 570 e^- @ 10 pF
- $10 \times \text{noise} : 5700 \ e^-$, $\Rightarrow \text{gain} > 100 \dots$

2 bar 3 bar 10³ 10² gain 0 Ó 0 0 10 1 30 40 50 80 100 60 70 90 Amplification field (kV/cm)

NIM A 608 (2009) 259

Fig. 5. Gain curves with both alpha (circles) and gamma (crosses) peaks, for Ar + 5% isobutane, at 2–4 bar.

T2K-like Gas

• Ar :95 ISO :2 CF4 :3 à 1 bar,

D. Karlen NIM A (2010)

• Ar :99 ISO :0.4 CF4 :0.6 à 5 bar, Quencher partial pressure kept unchanged

- matching of shaping (100 ns) resolution (1 mm) $\Rightarrow v_d \approx 1 \, cm/\mu s$
- P < 5 bar for optimal high-gain operation of the micro-megas amplifier