

6th International Conference in New Developments in Photodetection (NDIP) Lyon, 5th July 2011

Amorphous Silicon Based Microchannel Plates

Andrea Franco¹, Yannick Riesen¹, Nicolas Wyrsch¹, Sylvain Dunand¹, François Powolny², Pierre Jarron², Christophe Ballif¹

 ¹ Ecole Polytechnique Fédérale de Lausanne (EPFL) Institute of Microengineering (IMT)
 Photovoltaics and Thin-Film Electronics laboratory (PV-lab), 2000 Neuchâtel ² CERN, CERN Meyrin, 1211 Genève 23, Switzerland.

Outline

- Introduction to hydrogenated amorphous silicon (a-Si:H)
- a-Si:H microchannel plate (AMCP) advantages
- AMCP fabrication process
- AMCP characterization with EBIC technique
- Results and conclusions

Hydrogenated amorphous silicon (a-Si:H)

crystalline silicon (c-Si)

hydrogenated amorphous silicon (a-Si:H)

- tetrahedral structure conserved at short range, disorder at long range
- 2-20% of hydrogen reduces the dangling bonds down to ≈ 10¹⁶ cm⁻³

$$E_{g,a-Si:H} = 1.8 \text{ eV vs.} E_{g,c-Si} = 1.1 \text{ eV}$$

a-Si:H conductivity

Electrical properties	c-Si	a-Si:H
Drift mobility [cm ² ·V ⁻¹ ·s ⁻¹]	1350	≈ 1
electrons (holes)	(450)	(3·10 ⁻³)
Conductivity [Ω ⁻¹ ·cm ⁻¹]	≈ 10 ⁻¹⁰ - 10 ⁻⁷	≈ 10 ⁻¹⁰ - 10 ⁻¹²
a-Si:H conductivity changes with either phosphorous of boron doping Spear, Phil. M	Solution -1 -1 -1 -3 -3 -3 -5 -5 -5 -6 -7 -9 -11 -13 1 -13 1 -13 1 -13 1 -13 1 -13 1 -13 1 -13 1 -13 1 -13 1 -13 1 -13 -13 1 -13	p-type p-type p-type p-type 10^{-2} 10^{-6} 10^{-6} 10^{-2} 1 10^{-2} 10^{-6} 10^{-6} 10^{-2} 1 N_{PH_3}/N_{SiH_4}

Advantages of AMCP

- 1. no need for "strip resistance" and "insulating" layers (intrinsic a-Si:H σ_{dark} = 10⁻¹⁰ 10⁻¹² Ω^{-1} ·cm⁻¹)
- 2. use of the c-Si micromachining technologies
- 3. possibility of a vertical integration on Application Specific Integrated Circuit (ASIC):

a-Si:H Tdep < 250 °C

5

NEUCHATE

AMCP realization

NDIP 2011

Andrea Franco

AMCP test prototypes

4" oxidized Si wafer

15x15 mm² reticules with 16 pixels

- 0.5 x 0.5 2 x 2 mm² pixels
- Various channel diameters:
 2 6 µm in diameter
- Various channel gaps: 2 – 4 µm

Deep Reactive Ion Etching (DRIE)

Performing alternate steps of etching and passivation

NDIP 2011

Andrea Franco

Issues of first AMCP generation

- 5 µm holes
- 2.5 µm gap
- Collapse of amorphous silicon layer

- big columnar defects
- possible
 stresses in the
 layer and/or due
 to DRIE

AMCP leakage current

- 1. No blocking contacts and defective structure (~ μ A)
- 2. Lock-in thermography measurement reveals localized areas with high leakage currents
- 3. Bias voltage is limited to -340 V

Optical microscope Lock-in thermography

Andrea Franco

AMCP characterization with EBIC technique

FÉDÉRALE DE LAUSANN

NDIP 2011 IMT NEUCHATE

EBIC maps: tilting effect

First proof of amplification mechanism !

PV-lab

NDIP 2011

Current amplification vs. beam current

15° tilt, 5 keV: 10 pA, 30 pA and 150 pA

Further proof of amplification mechanism !

Current amplification vs. beam energy

Andrea Franco

FÉDÉRALE DE LAUSANN

Current amplification vs. bias voltage

higher gain is expected at <u>higher</u> <u>bias voltage</u> and <u>pulse operation</u> <u>mode</u> !

- 1. First a-Si:H microchannel plates (AMCP) were realized, even though the fabrication process needs to be improved.
- 2. First proof of the amplification mechanism is given by using EBIC technique.
- 3. Gain needs to be confirmed by further tests at higher bias voltage and in pulse operation mode.
- 4. AMCP can be vertically integrated on top of an Application Specific Integrated Circuit as monolithic detector.

Thank you for your attention

NDIP 2011

EBIC maps: effect of top surface erosion

 $\mbox{Erosion} \rightarrow \mbox{loss}$ of top contact integrity \rightarrow uneven spread of bias voltage

NDIP 2011

