Time-of-Flight PET using Cherenkov Photons Produced in PbF₂ Crystals

R. Dolenec^a, S. Korpar^{b,a}, P. Križan^{c,a}, R. Pestotnik^a, A. Stanovnik^{d,a}

^a Jožef Stefan Institute, Ljubljana, Slovenia
^b Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia
^c Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
^d Faculty of Electrical Engineering, University of Ljubljana, Slovenia

Outline:

- detection method & Cherenkov radiator
- MCP PMT & experimental setup
- simulations
- back-to-back timing resolution
- summary

6th International Conference on New Developments In Photodetection Lyon - France, July 4-8, 2011

Rok Dolenec Jožef Stefan Institute

TOF PET using Cherenkov photons

- Contrast of images obtained with positron emission tomography (PET) can be improved by measuring time-of-flight (TOF) difference of annihilation gammas
 - localizes source position on line of response (LOR)
 - reduces number of background sources on LOR contributing to random coincidences
 - improves S/N ratio

PET

- Novel photon detectors (SiPM, MCP-PMT) have excellent timing resolution \rightarrow time-of-flight resolution is limited by scintillation decay time.
- Charged particles passing trough matter at a speed higher than the speed of light ($v_{Thr} > c_0/n$) produce prompt Cherenkov photons.
- However, at low energies (e⁻ from 511 keV annihilation γ), only a small number of Cherenkov photons is produced \rightarrow single photon detection.

Cherenkov radiators

- To obtain Cherenkov photons from 511 keV annihilation gammas, they must transfer their energy to an electron in a suitable Cherenkov radiator:
 - − high 511 keV γ stopping power → high ρ/Z
 - high fraction of γ interactions via photoeffect electron receives more energy than via Compton scattering \rightarrow high Z
 - high enough index of refraction more electrons produced above Cherenkov threshold v_{Thr}
 - good optical properties transmission for visible & near UV Cherenkov photons
- Most promising available crystals: PbF₂ and PbWO₄ (PWO)

	ρ (g/cm³)	n (λ=400nm)	E _{Thr} (keV) for e ⁻	$\begin{array}{c} \text{Optical} \\ \text{transmission} \\ \lambda_{_{\text{Cutoff}}} \ \text{(nm)} \end{array}$	Light yield (ph/MeV)	Decay time (ns)	Emission peak (nm)
PbF ₂	7.77	1.8	104	250	-	-	-
PbWO ₄	8.28	2.3	56	350	200	6 / 30	440 /530

Cherenkov photon production

 Estimated number of Cherenkov photons produced in 15mm thick crystal with n=2.0, assuming e⁻ path length of l=100µm and Cherenkov photon energy inteval of 3eV (~ 250 - 700nm):

```
N \approx 370 \ (eV^{-1} \ cm^{-1}) \cdot l \cdot \Delta E \cdot sin^2 \theta_c
```

```
N ≈ 370·0.01·3·0.75 ≈ 8
```


- optical photon travel time in the crystal a significant contribution to the timing resolution
 - even for Cherenkov photons going strait to the photodetector the time spread of 50 ps results from depth of interaction
 - additional variations due to initial path direction, reflections

Microchannel plate photomultipliers

- two Hamamatsu MCP PMTs (prototypes for Belle II TOP counter), #5 and #8
 - PMT with two MCP steps, 10µm pores
 - multi-anode, 16 (4x4) pads, pitch ~ 5.575mm
 - active surface 22.5x22.5mm²
 - multi-alkali photocathode, 1.5mm thick borosilicate window
 - excellent timing σ -20ps for single photons

Time-of-Flight PET using Cherenkov Photons Produced in PbF₂ Crystals

Experimental setup

- Two detectors in back-to-back configuration
 - 25x25x15 (5) mm³ PbF₂ or PbWO₄ crystals, coupled to MCP-PMT with optical grease
 - ²²Na point source
- Readout
 - amplifier (ORTEC FTA820)
 - LE discriminator (Philips sc. 708)
 - TDC (25ps/bin Kaizu works KC3781A)
 - QDC (CAEN V965)
 - time-walk correction applied in analysis

Rok Dolenec Jožef Stefan Institute

Simulation

- experimental back-to-back configuration was simulated in GEANT4, taking into account:
 - 511keV gamma pairs interacting with the crystals
 - optical photons produced between 250nm 800nm by Cherenkov process (and scintillation in case of PbWO₄)
 - optical photon boundary processes (exit surface polished, other surfaces polished and wrapped in diffuse reflector - Teflon or painted black)
 - 1.5mm borosilicate photodetector window, coupled with optical grease (n=1.5)
 - photodetector QE
 - perfect photodetector timing simulated timing resolution only includes photon travel time spread

Simulation - Optical photon production

- wavelength distributions for number of Cherenkov photons produced, QE and optical transmissions
- wavelength distributions of <u>first</u> detected photon (Cherenkov or scintillation)
- more Cherenkov photons produced in PbWO₄, however due to worse transmission less are detected than in PbF₂

	PbF ₂	PbWO ₄
e⁻ above E _{Thr}	77%	88%
Ch.ph. produced / γ	10.2	15.8
Ch.ph. detected / γ (reflector)	0.11	0.68
Ch.ph. detected / γ (black paint)	0.070	0.044

produced [a.u.]

Ch. photons

Simulation - coincidence timing resolution and efficiency (ϵ^2)

• time difference between first optical photons reaching each photodetector

Time-of-Flight PET using Cherenkov Photons Produced in PbF₂ Crystals

NDIP

Simulation - summary

- detection of single photons & QE very low coincidence efficiency (~ 1%)
- black paint stops most reflections at crystal surfaces
 - improves timing
 - reduces efficiency (but mostly at the expense of photons with bad timing)
- PbF₂
 - expected coincidence resolution $\sigma \sim (25 \oplus 2^*20)$ ps ~ 40ps (15mm thick, black painted crystals)
- PbWO₄
 - higher $\rho \rightarrow$ gamma stopping power
 - higher n and Z \rightarrow more e⁻ above Ch. threshold \rightarrow more Ch. photons
 - optical transmission $\lambda_{Cutoff} \rightarrow$ less Cherenkov photons detected
 - higher $n \rightarrow$ slower optical photons \rightarrow worse timing resolution
 - scintillation background

Experimental results - coincidence timing resolution

- time-walk corrected time difference between two selected channels, located near the center of MCP PMT
- crosstalk suppressed events only events, where the selected channels had maximum charge on their MCP PMT
- 15mm thick PbF₂ crystals, wrapped in Teflon: $\sigma \sim 44ps$ (103ps FWHM)
 - reflected photons are significantly delayed and produce long tails

Experimental results - coincidence timing resolution

 black painted, 15mm thick PbF₂ crystals: σ ~ 37ps (87ps FWHM)

 black painted, 5mm thick PbF₂ crystals: σ ~ 30ps (71ps FWHM)

NDIP

Experimental results - point source position

- black painted, 15mm thick PbF₂ crystals
- point source moved in 20mm steps along LOR
 - average time shift ~ 125ps (\rightarrow 19mm)
 - timing resolution $\sigma \sim 40 ps$

→ position resolution $\sigma \sim 6mm$ (14mm FWHM)

$$\Delta x = \frac{c_0 \Delta t}{2}$$

MCP PMT Cherenkov radiator point source

Experimental results - PbWO₄

- black painted, 15mm & 5mm thick PbWO₄ crystals
- narrow (Cherenkov) peak barely visible, even at 5mm
- 15mm: σ ~ (38 ± 18)ps
- 5mm: σ ~ (39 ± 10)ps
- majority of events produced by single photon detection
- coincidence rate ~30x the rate with PbF₂ crystal (15mm thickness) → majority of events produced by scintillation

Summary

- Scintillation decay limits the TOF resolution
- Prompt Cherenkov photons in combination with very fast photodetectors can be used to measure TOF for 511keV annihilation gammas
- The limiting factor becomes the propagation time spread of Cherenkov photons in the crystal
- Measured coincidence time resolution for
 - 5mm thick PbF₂ crystal $\sigma \sim 30$ ps (71ps FWHM)
 - 15mm thick PbF₂ crystal $\sigma \sim 37ps$ (87ps FWHM)
- Measured position resolution along LOR σ ~ 6mm (14mm FWHM)
- With PbWO₄ crystal the scintillations present a challenge
- Efficiency of this method is rather low (~1%)
 - improvements possible with SBA photocathode, quartz PMT window and possible new Cherenkov radiators (transmission in UV)
 - such excellent time resolution may enable modified reconstruction methods, maybe possible with lower statistics

Backup slides

Reconstruction - first attempt

- simulated full body scanner:
 - 16 rings (~370mm axial coverage)
 - ring R=400mm, 112 detectors/ring
 - detector: 15mm thick, black painted PbF₂, segmented into 4x4 (~5.5mm pitch)
 - MCP PMT time response included
- phantom R=135mm, h=300mm
- 2 point (R=0.3mm) sources
 - at (-5,-5,-5) mm and (5,5,5) mm
- Most Likely Position reconstruction method
 - point on LOR defined by TOF information

$$r = \frac{(r_1 + r_2)}{2} - \frac{c_0 \Delta t}{d_{LOR}} \frac{(r_2 - r_1)}{2}$$

Reconstruction - MLP method

Simulated events

200

. ≣ ≸50

100

50

0

-50

-150

-200

- transverse projection
- all coincidences, including all crossplane
- phantom visible
- two sources separated -100 by ~14mm in projection

- $-\sigma \sim 3.5$ mm
- after deconvolution
 - σ ~ 2.9mm

10

MCP PMT intrinsic timing resolution

- measured with PiLas pico-second laser (λ =406nm), attenuated to single photon detection level
- r.m.s. of prompt peak for both samples below 30ps, including contributions from laser (~15ps) and electronics (~11ps)
- intrinsic timing resolution for single photons ~ 20ps
- about ~ 1ns long tails, mainly due to photoelectron backscattering from front MCP surface

Time-of-Flight PET using Cherenkov Photons Produced in PbF₂ Crystals

Setup - redout configuration

- Limited number of electronic channels 4 per MCP-PMT:
- 2 channels near the center instrumented individually
- Remaining channels combined in groups of 7
- Signal from single photon can be detected on more than one channel due to charge sharing, cross-talk ...
- Directly hit channel will most probably have the largest signal.
- Plots labeled 'crosstalk suppressed' use only the channel with the largest signal.

Time-walk correction

• Leading Edge discriminator - triggers at set signal voltage level \rightarrow smaller pulses register at later time

Black paint (PbF₂)

Time-of-Flight PET using Cherenkov Photons Produced in PbF₂ Crystals

Simulation - electron production

NDIP

Photon interaction with matter

- Compton scattering: γ scatters on electrons, loosing part of its energy
 - cross section $\propto Z/E_v$
- photoelectric absorption: $\boldsymbol{\gamma}$ is absorbed, giving most of its energy to electron
 - cross section $\propto Z^n/E_{\gamma}^{-3}$, n~4

