Study of 144-channel Hybrid Avalanche Photo-Detector for Belle II RICH Counter

Koji Hara KEK

I. Adachi¹, T. Iijima², M. Imamura², S. Iwata³, S. Korpar^{4,5}, P. Križan⁵, T. Kumita³, W. Mori⁶, S. Nishida¹, R. Pestotnik⁵, A. Seljak⁵, T. Sumiyoshi³, H. Takagaki³, S. Tagai⁶, Belle II Aerogel RICH group

¹High Energy Accelerator Research Organization (KEK),
 ²Nagoya University,
 ³Tokyo Metropolitan University, ⁴University of Maribor,
 ⁵Joseph Stefan Institute, ⁶Toho University

Belle II Aerogel RICH Counter

- Particle ID plays an essential role in B factory experiments.
 o Especially <u>K/π ID</u> tells us <u>flavor transition of b quark</u>.
- **Belle II** \rightarrow attack <u>New Physics</u> in flavor structure Distinguish B $\rightarrow \pi\pi$ from K π , B $\rightarrow \rho\gamma$ from K* γ , etc. \rightarrow PID up to <u>4GeV/c</u>
- Upgrade of Belle endcap PID <2GeV/c by threshold-type aerogel Cherenkov counter

Concept of Belle II Aerogel RICH

Proximity focusing RICH based on silica aerogel radiator

Target: more than $4\sigma K/\pi$ separation at 4 GeV/c

Essential components

<u>Silica Aerogel</u> Refractive index ~1.05 Highly Transparent

Photodetector : 144ch HAPD

Large sensitive area High sensitivity to single photon Position resolution of 5x5 mm² Immunity to high magnetic field (1.5T)

<u>Readout electronics</u> Readout 10⁵ channels at once

→ Development of dedicated ASIC

144ch Hybrid Avalanche Photo Detector

 We have been developing a new 144ch Hybrid Avalanche Photo Detector (HAPD) with Hamamatsu Photonics since 2002.

Quantum Efficiency

HAPD QE has been greatly improved with "super bialkali" technology by Hamamatsu.

HAPD Performance in B=1.5 T

We have confirmed HAPD achieves 5mm position resolution and has improved performance in 1.5T.

ASIC for Readout of 144ch HAPD

- We need high density front-end electronics including high-gain and lownoise amplifier for A-RICH.
- → We have been developing ASICs for front-end electronics. We planed to readout output of ASIC with FPGA.

4 step variable gain preamplifier.
4 step variable shaping time shaper. (250-1000ns)
Comparator for the digitization of analog-signals. (We need only on/off hit information)
We have developed new ASIC SA01(12ch) and SA02 (36ch).

July 6, 2011 • 7

FPGA

Readout test of HAPD with ASIC

CH1

Coupling

Bandwid th

⊢ Fu∏

Probe

Auto

Invert

Off On

Next

Very high S/N ratio (target > 7)!

Good performance of readout system with ASIC + FPGA has been confirmed.

- Performed at Fuji test beam line in KEK November 2009.
- 6 HAPDs from recent batches (max QE 30%, avg. QE 24% @400nm).
- Aerogel radiators with improved transparency are used.
 - Transmission length@400nm > 45mm
- Track¹ parameters are measured by two MWPCs.

July 6, 2011 • 9

Beam Test Result

Performance of RICH with HAPD

<u>New 144ch HAPD</u>

- o Large effective area.
- o High sensitivity to single photon
- o Position resolution(5×5mm²)
- o Immunity to 1.5 T magnetic field

<u>Silica aerogel by new method</u>

- o Highly Transparent
- <u>Readout ASICs</u>

The prototype RICH using HAPD achieved enough performance for Belle II.

Remaining concern :

Radiation tolerance of HAPD in Belle II

Neutron Irradiation Test of HAPDs

- Neutron damage of APDs is the most significant concern.
- In Belle II 1 year, 10¹¹ n / cm² is expected

→ target: Belle II 10 years, 10¹² n /cm²

 Neutron irradiation tests are performed using reactor "Yayoi".

Reactor "Yayoi" of Tokyo Univ.

Flux: 2×10⁸ neutrons/cm²/sec at W=500W Average energy: 370keV

Influence of Neutron Irradiation

Noise from increased I_{leak} must be reduced to keep 1 p.e. detection capability.

NDIP20

y 6, 2011 ●14

Achieved enough S/N=7 after 5x10¹¹ n/cm²(Belle II 5 years)

More Improvement for Belle II 10 years

5x10¹¹ n/cm² S/N=7 has been achieved

1x10¹² n/cm² expect S/N ~ 5 \rightarrow <u>need more improvement</u>

APD samples with various thickness of P and N
layers are irradiated in 2010 Jan and June at

Results

APD Δ leakage current (10¹²n/cm²)

- Increase of I_{leak} depends on thickness of P layer
- No dependence on N layer thickness

Confirmed I_{leak} reduction by thinner P layer

→New HAPD sample with thinner-P APDs is produced and irradiated in 2010 Nov.

NDIP2011

July 6, 2011 • 17

Thin-P HAPD Irradiation Test Result

Better S/N of HAPD with thin-P than the standard has been confirmed.

Conclusions

- New 144ch HAPD has been developed for Belle II Aerogel RICH counter.
 - o Large sensitive area
 - o High sensitivity to single photon
 - o Position resolution of 5x5 mm²
 - o Immunity to high magnetic field (1.5T)
 - Excellent PID performance of RICH with HAPD has been confirmed.
 - → More than 5σ K/π separation demonstrated from test beam experiment.
- Remaining concern: Radiation tolerance of HAPD
 - Neutron damage manageable up to 5×10¹¹ n/cm²
 - It is confirmed that HAPD with thinner-P APD reduces neutron induced damage.
 NDIP2011

Future Plan

- Further studies of HAPDs for radiation hardness.
 Gamma ray irradiation is under study.
- Prototype Aerogel RICH test with hadron beam is scheduled in September, 2011 @CERN (SPS).
- Fix specification of HAPD and prepare for HAPD mass production.

• NDIP2011

July 6, 2011 • 21

Single photon Response

144ch HAPD has excellent single photon detection performance

NDIP2011

July 6, 2011 • 22

Test in magnetic field

Performance of HAPD in the 1.5T magnetic field is measured using a special equipment to scan the HAPD surface with pulse laser.

Effect of magnetic field

HAPD performance is expected to be improved in a magnetic field.

• NDIP2011

Dual-layer Focusing Scheme

- Cherenkov angle resolution of proximity focusing RICH:
 - $\sigma_{gel}/\sqrt{N_{p.e.}} \propto \sqrt{d}$
 - \rightarrow Limited by radiator thickness.
 - Increase effective thickness without degrading the angle resolution

→ Focusing scheme

[T. lijima, et al. NIMA 548,383 (2005)]

Transmittance of <u>larger n (>1.05)</u> is very important.

→ Highly transparent aerogels have

been produced by new method. [M. Tabata et al. Conf. Rec. IEEE NSS 2005, 816; NIM A623, 339 (2010)]

Refractive

 $n_1 < n_2$

indices

d