Status of QUPID, a novel photosensor for noble liquid detectors

E. Pantic¹, D. Aharoni¹, K. Arisaka¹, P. Beltrame¹, D. Cline¹,
A. Fukasawa², C.W. Lam¹, T. Lim¹, K. Lung¹, Y. Meng¹,
S. Muramatsu², A. Teymourian¹, M. Suyama², H. Wang²

¹University of California, Los Angeles, ²Electron Tube Division, Hamamatsu Photonics K.K.

July 6th, 2011

Emilija Pantic (UCLA)

QUPID - QUartz Photon Intensifying Detector

- Hybrid photo sensor = photocathode + APD
- Developed for future noble liquid detectors
- First application in direct dark matter detector
- R&D jointly by UCLA and Hamamatsu

QUPID Motivation

A need for ultra low radioactivity photosensor.

- Low background is crucial for the sensitivity of rare event searches such as Direct DM
- Liquid noble DM detector concept: LXe/LAr target for DM interaction + PMTs for detection of signal
- Dominant electromagnetic background originating from detector materials and shield comes from PMTs
- Metal package, stem pins, SS electrodes are dominant radioactive components of a PMT (arxiv/1103.5831)

XMASS radioactivity of PMTs contribute >70% to the total background rate of all detector materials

arxiv/1006.1473

XENON100 radioactivity of PMTs contribute >60% to the total background rate of all detector materials

Phys. Rev. D 83, 082001 (2011)

SINGLE PHASE DETECTOR

Emilija Pantic (UCLA)

NDIP2011

3/20

July 6th, 2011

fiducial

Concept of dual phase liquid noble DM detector

- Both prompt scintill. signal (S1) and proportional scintill. signal (S2) recorded by the PMTs
- Energy region of interest for DM up to ~40 keV (LXe), or ~200 keV (LAr).
- Higher energy region for regular detector calibration up to few 100 keV.
- FAST S1 signal width scintillation decay time (~ few ns to ~ μs) shared among all PMTs.
- SLOWER AMPLIFIED S2 signal width 1-2µs and mainly localized on few top PMTs.
- Wavelength: UV to visible.

Photosensor requirements:

Better than current generation PMTs in all aspects (easy to write!)

- ▶ Ultra low intrinsic radioactivity
- \blacktriangleright High quantum and collection efficiency > 30% at $178 \mathrm{nm}/420 \mathrm{nm}.$
- Single photon sensitivity i.e total gain $>10^6$.
- Wide dynamic range $>10^4$ ($>10^6$ DBD).
- ▶ Good charge resolution.
- \blacktriangleright Good time resolution and pulse width <10ns.
- \blacktriangleright Simple structure &relatively large sensitive area \sim few tens of $\rm cm^2$

5/20

▶ Good uniformity across sensitive area.

QUPID Design

NDIP2011

L 6/20

QUPID

Emilija Pantic (UCLA)

NDIP2011

1 7/20

Radioactivity comparison

QUPIDoverall lowest radioactivity per area.

Radioactivity measured by University of Zuerich (arxiv:1103.3689, 1103.5831).

Phototube	Eff.Area	Units	238 U	226 Ra	232 Th	$^{40}\mathbf{K}$	60 Co
R8520	$6.4 \mathrm{cm}^2$	mBq/cm^2	$<\!2.3$	< 0.056	< 0.070	2.2	0.10
R11410mod	$32 \mathrm{cm}^2$	mBq/cm^2	$<\!2.9$	< 0.076	< 0.082	0.42	0.11
QUPID	$32 \mathrm{cm}^2$	mBq/cm^2	$<\!0.54$	0.010	0.012	0.17	< 0.0056

Emilija Pantic (UCLA)

NDIP2011

1 8/20

July 6th, 2011

Photocathode quantum efficiency

- Ar and Xe version of QUPID developed.
- ► >30% QE for 178nm = LXe scintillation light.
- ► >30% QE for ~ 400nm, wavelength shifted LAr scintillation light.
- First tests done on QUPIDs for LXe.

Emilija Pantic (UCLA)

NDIP2011

 $1 \quad 10/20$

July 6th, 2011

QUPID: Total gain

- ▶ Bombardment gain $\neq f(T)$ with max gain ~750;
- ▶ Avalanche gain shows strong temperature dependence with max gain ~200. Leakage current from 100nA (25C°) to 0.5nA (-100C°)
- ▶ Total gain $\sim 10^5$.

QUPID: Single photon sensitivity

- Clear 1, 2, .. p.e. peaks.
- Good time resolution (3x3mm APD).
- Future improvements !

QUPID: Linearity

Photocathode DC

linearity up to 1 μ A (LXe) few tens nA (LAr).

Anode pulse $(1\mu s)$

linearity $\neq f(T)$. 5% deviation at ~3 mA peak anode current for a gain of 10⁵.

QUPID

Input of $\sim 10^5$ pe for a pulsed $\sim 1\mu$ s.

July 6th, 2011

QUPID: Uniformity

Photocathode response uniform within 20% and collection eff. >80%.

Emilija Pantic (UCLA)

NDIP2011

QUPID: Operation in LXe

- QUPID fully immersed in LXe.
- ▶ $T = -100C^{\circ}$. P=1.6bar.
- ► Stable operation for ~ 2 weeks.
- Continuous purification of LXe through hot getter.
- Gain calibration via optical fiber.
- Calibration sources.

Emilija Pantic (UCLA)

QUPID: First measurements of LXe scintillation light

Emilija Pantic (UCLA) NDIP2011

QUPID: Ongoing R&D

QUPIDs are proposed photosensors for future liquid noble DM detectors: XENON1T (LXe) and DarkSide (LAr).

Production @ Hamamatsu

- ▶ back-illuminated APD with breakdown V >full depletion V@LAr temp.
- ▶ QUPIDs with higher max photocathode HV.
- ▶ QUPIDs optimized for LAr scintillation.

Screening within XENON1T&DarkSide and at Hamamatsu

- ▶ continue to screen QUPIDs in low background germanium detector facilities.
- ▶ screen all building material individually.

Readout @ UCLA/Fermilab/Gran Sasso

- ► Development of multichannel QUPID readout systems.
- Different approaches being investigated.

Emilija Pantic (UCLA)

NDIP2011

17/20

July 6th, 2011

QUPID: Ongoing R&D

QUPIDs are proposed photosensors for future DM detectors: XENON1T (LXe) and DarkSide (LAr).

Characterization @ UCLA

- building several cryogenic systems to test 7 (or more) QUPIDs at once.
- characterization at low temperatures in vacuum/GN2.
- Operation in GAr, LAr, GXe, LXe. Crucial for deployment in future DM detectors.
- We want to study: long term stability, performance in the strong electric field, afterpulsing and cross-talks.

Summary

- QUPIDs are particularly promising candidates for replacement of PMTs in future ton-scale liquid noble detectors.
- Outstanding features: low intrinsic radioactivity, high quantum and collection efficiency, good charge resolution, high gain, wide linear dynamic range, satisfactory gain uniformity. good timing response.
- ▶ QUPID operation in the liquid noble environment was successfully demonstrated at UCLA.
- ▶ Further developments on QUPID continue.

Characterization of the QUartz Photon Intensifying Detector (QUPID) for use in Noble Liquid Detectors

A. Teymourian,^{1,1} D. Aharoni,¹ L. Baudis,² P. Beltrame,¹ E. Brown,^{1,1} D. Cline,¹ A.D. Ferella,² A. Fukasawa,³ C.W. Lam,¹ T. Lim,¹ K. Lung,¹ Y. Meng,¹ S. Muramatsu,³ E. Pantic,¹ M. Suyama,³ H. Wang,¹ and K. Arisaka¹ ¹Department of Physics and Astronomy, University of California, Los Angeles, ⁴⁷⁵ Portola Plaza, Los Angles, CA 90005, USA ²Physics Institute, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland ³Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata City 438-0193, Shizuoka, Japan arXiv:11103.3689

Emilija Pantic (UCLA)

	Performance	25° C	-100° C	
Photocathode	Material	Bialkali-LT		
	Quantum Efficiency at 178 nm	$34 \pm 2\%$	-	
	Linearity (5% limit)	$> 10 \ \mu A$	$> 1 \ \mu A$	
Electron Bombardment	Acceleration Voltage	6 kV		
	Typical Gain	750		
	Maximum Gain	800		
APD -3mm diameter	Capacitance	11 pF		
	Leakage Current	200 nA	0.3 nA	
	Breakdown Voltage	360 V	180 V	
	Typical/Max Gain	200/300		
Anode Output	Typical Total Gain	1.5×10^{5}		
	Maximum Total Gain	2.4×10^{5}		
	Linearity ⁰	3 mA		
Timing Properties	Rise Time (10%-90%)	$1.8 \pm 0.1 \text{ ns}$		
	Fall Time (90%-10%)	$2.5 \pm 0.2 \text{ ns}$		
	Pulse Width (50%-50%)	$4.20 \pm 0.05 \text{ ns}$		
	Transit Time Spread (FWHM)	$160 \pm 30 \text{ ps}$		

Emilija Pantic (UCLA)

NDIP2011

11 20/20