

Highlights of Poster Session II

Agnès Dominjon IPN Lyon – CNRS – France

Poster Session II Details

* 13 contributions (originally 22 - 9 withdrawn)

Covered technologies and fields are:

- XRay detectors : 6 contributions

- Camera :
- 2 contributions
- Avalanche Photo-diode :1 contribution
- Hybrid detectors: 1 contribution
- Solid State detectors : 1 contribution
- Other detectors : 2 contributions

Acknowledgments and disclaimer

- Many thanks to all contributors for their highlight slides
- Order of presentation is « random » no preference !
- Apologies for possible inconsistencies be tolerant !

XRay detectors

6 contributions

NDIP

Third Generation Computed Tomography with Energy Information of X-rays using CdTe Flat Panel Detector

Ikuo Kanno *et al.* – Kyoto University, Japan

- Motivation: Computed Tomography (CT) is a wonderful method to detect cancers but when cancers are marked by iodine it becomes difficult to be observed with high tube voltage diagnosis
- The idea: to exploit the energy information of X-rays in transmission measurements
- This work: a novel detector which measures X-rays as current and gives energy distribution of incident X-rays called transXend detector

Photon detection by an InSb compound semiconductor detector with reduced leakage current

Yuki Sato et al. – Kyoto University, Japan

Motivation: photon detector with compound semiconductor InSb in order to detect hasardous elements such as Li, Be and Pb (environmental preservation)

This work: reducing leakage current by cooling and with changing the electrode design

Synchrotron radiation studies of spectral features caused by Te inclusions in CdZnTe

Conny Hansson et al. - European Space Agency/ESTEC, the Netherlands

* CdZnTe (CZT): recognised as a high energy X-ray and γ -ray detection medium due to its high stopping power and wide band gap.

- Problem:
 - detector perf. limited by defects in the crystal structure
 - spectroscopic performances are limited by Te inclusions

This study: 10 mm thick CZT coplanar grid detector having large Te inclusions exposed to pencil beam synchrotron radiation in order to study spectroscopic features introduced by Te inclusions at different X-ray energies

Results:

- small inclusions $<3\mu$ m : compensated by depth sensing techniques
- Iarger inclusions: variation in collected charge carrier number
 - introducing trapping levels
 - affecting the electric field profile inside the detector

Spectral performance evaluated as a function of inclusion size

Explanations on Poster 95

STIX (Spectrometer Telescope for Imaging X-rays): will provide information on the timing, location, intensity and spectra of accelerated electrons near the sun

Caliste-SO: an hybrid component integrating the sensor material and dedicated front-end electronics for high resolution X-ray spectroscopy

One Cd(Zn)Te pixel detector

 IDeF-X front ASIC(s) placed perpendicular to the detection surface for performance optimization

 A bottom interface to get a spacequalified component for X-ray spectroscopy

◆ Applications: • Hard X-ray astronomy: see Talk Caliste-256, session S14 Thursday PM

 → use advantages of small pixels and possibility to place several units side by side for
 a large focal plane

- Solar physics: Caliste-SO on board Solar Orbiter ESA mission (phase B)
- \rightarrow use advantages of a compact design, low power (new ASIC version: IDeF-X

Challenges for this device:

• High count rate of solar flares (up to 105 counts/s/detector)

 1 keV FWHM @ 6 keV with large pixels (8 mm2) moderate cooling (-20°C) and strong radiation level (1011 10 MeV equivalent protons/cm2 during the whole mission).98 & Listen Talk Session 14

Spectroscopic and non-spectroscopic diagnostics of radiation detectors

Mikhail Bryushinin et al. - Ioffe Physical Technical Institute, St. Petersburg

This work: study CdTe and Cd_xZn_{1-x}Te radiation detectors with a non-destructive optical method which uses the effect of non-steady-state photoelectromotive force (photo-EMF)

* Method: the non-steady-state photocurrents can be excited in widegap semiconductors illuminated by an oscillating light pattern.

Such illumination is created by 2 coherent light beams one of which is phase modulated with frequency ω .

This technique allows the direct transformation of phase modulated optical signals into the electrical current.

A lot of photoelectric parameters can be measured: carriers' lifetime τ and mobility μ , diffusion L_D and drift lenghts L_0 , concentration of trapping centers N_D

Poster ID 153

Photo-EMF experimental setup

Experimental results:

- characterization of transport parameters of CdTe and CdZnTe
- $\mu\tau\text{-product}$ calculated using experimental data

More results on Poster 153

	Dark conductivity	Photoconductivity	Diffusion length of holes
CdTe	$0.83 \mathrm{x} 10^{-9} \Omega^{-1} \mathrm{cm}^{-1}$	(1.1-2.5)x10 ⁻⁹ Ω ⁻¹ cm ⁻¹	>18 µm
CdZnTe	$0.64 \mathrm{x} 10^{-9} \Omega^{-1} \mathrm{cm}^{-1}$	(0.8-2.8)x10 ⁻⁹ Ω ⁻¹ cm ⁻¹	5.9 µm

Photoelectric parameters of CdTe and CdZnTe radiation detectors (λ =1.15 µm, I_0 =3.0-24 mW/cm²):

GaN detector development for particle and X-ray detection

Alan Owens et al. - European Space Agency/ESTEC, The Netherlands

Poster ID 179

Camera

2 contributions

Wide-Field Single Photon Counting Imaging with an Ultrafast CMOS-Camera and an Image Intensifier

Gianmarco Zanda *et al.* - King's College London

Aim: to design a system with positional, temporal information and high sensitivity (single photon)

Setup : Ultra-Fast CMOS camera coupled with a photon counting Image Intensifier (3-stage)

- Acquisition with a pulsed laser allows luminescence decay measurements
- Phosphor decay can be exploited for photon arrival timing below camera exposure time

Advantages:

- Ultra high frame rate
- Single photon sensitivity, photon event is amplified BEFORE accumulation
- Wide Field technique (positional information and faster than PMT scanning: parallel processing of all pixels)
- High signal to noise ratio (yes/no in the event localization)
- Temporal Information photon arrival time with Microsecond Resolution
- Centroiding techniques to improve spatial resolution but introduces fixed pattern noise (FPN)

Discussion on centroiding, timing of the events and FPN on Poster 181 12

Charge Diffusion Measurement in Fully Depleted CCD using X-rays

Poster ID 138

3

5

σ, μm 13

Ivan Kotov et al. - Brookhaven National Laboratory, USA

Context: specialized CCD sensors are being developed for the Large Synoptic Survey Telescope. LSST requires sensor contribution to Point Spread function (PSF) to be small and well characterized.

Setup: sensor PSF is determined by the lateral charge diffusion on the drift path from the CCD window to the gate use of an X-ray source (55Fe) to measure charge diffusion

Avalanche Photo-Diode (APD)

1 contribution

NDIP

Anomalous APD signals in the CMS ECAL

David Petyt et al. - STFC Rutherford Appleton Lab.

Setup: The main component of the Compact Muon Solenoid (CMS) to detect and measure the energies of electrons and photons from proton-proton collisions is the Electromagnetic Calorimeter (ECAL).

- ECAL consists of 75848 PbWO4 crystals, organized into a barrel and 2 endcap detectors
- Scintillation light emitted by the crystal is converted in electrical signals by Avalanche Photo-diodes (APDs) glued to the rear face of the crystal.

Poster ID 109

- Problem: Anomalous signals, consisting of isolated large signal, have been observed during LHC 2009-11 data taking. "ECAL spikes" are observed to be proportional to the proton beam intensity.
- Understanding: Spikes are ascribed to direct energy deposition by particles striking the APDs and causing occasionnally large signals through direct ionization of the silicon.

Hybrid Photodetector

1 contribution

Poster ID 37 Use of Hybrid Photon Detectors in scintillations studies and imagin applications

Jiri A. Mares et al. - Institute of Physics, AS CR, Czech Republic

Detector: HPMT = a photocathode + one Si-PIN diode used as an anode Photoelectrons electrostatically focused on Si-PIN diode

- Aim: HPMT used in characterization of scintillating materials
 - energy resolution
 - non linearity
 - reliable photoelectron calibration
 - less noise respect to classical PMT's

Applications:

- largest use: at LHCb experiment at CERN at the RICH detectors for particle identification (500 HPD's used)
- imaging application: γ-ray optoelectronic camera
 ISPA tube = YAP:Ce photocathode + array of Si-diode pixels

More details on Poster 37

Solid State Detectors

1 contribution

Single photon avalanche diode radiation tests

Josef Blazej et al. - CTU Prague, Czech Republic

- Single Photon Avalanche Diode (SPAD): provided by Czech Technical University (structure on Silicon)
- Context:generally used in lidar or various ranging experiments
 - recently planned for applications in deep space missions that is why radiation damage tests were carried out.
 - > Expected source of radiation = trapped and solar protons and electrons and gamma ray
 - Expected to change after radiation = SPAD effective dark count rate (increasing)
 - > Not expected to change = other parameters such as QE, breakdown voltage, speed...
- Tests using 2 radiations: proton radiation and gamma ray

1 - Indiana University Cyclotron Facility: 54 MeV energy protons

- Iow proton flux: no changes in DC rate
- high proton flux: DC increases from 0.3Mc/s to 1.6Mc/s
 - DC rate depends on the radiation flux
- slow annealing effects in time: decrease slope of 0.8Mc/s in 100 days after irradiation.
 - 2 Nuclear Research institute in Rez: ⁶⁰Co source
 - Gamma ray radiation did not caused any significant changes in diodes performance:
 DC rate = 0.2Mc/s before and after irradiation

Measurements results 19 on Poster 184

Other Photodetectors

2 contributions

First steps towards small prototype gamma camera based on wavelength shifting fibers

I.F.C. Castro and L.M. Moutinho *et al.* - i3n, Physics Dept, Univ. of Aveiro, Portugal

Poster ID 168

* Context: development of higher resolution gamma cameras is interesting in cancer diagnosis

Position of maximum output signal for different collimator hole positions

New Micromesh Gas Detector for Gaseous Photomutiplier

F Tokanai et al. - Dept of Physics, Yamagata University, Japan

* Gaseous PMT: can achieve a very large effective area *but* moderate position and timing resolutions

Development of a New Micro Mesh Gas (Micromegas) detector

- fabricated by chemical etching in conical holes on the metal of $46\mu\text{m}$ thickness
- holes diameters = 80 and 120 μm Pitch = 250 μm
- drift and absorption region for X-rays = 5 mm

- amplification region (between mesh and anode) where a high electric field is formed to induce electron avalanches = 150 to 200 μm

Poster ID 45

Performance test using X-rays (6keV)

Performance test using UV light

Development of a gaseous PMT composed of a Csl photocathode and the Micromegas detector

Gain up to 2×10^4 for $V_{applied} = 500V$

Encouraging results to develop a gaseous PMT with a bialkali photocathode sensitive to visible light !

More results on Poster 45

Conclusions and perspectives

WELCOME TO POSTER SESSION II !

All contributors are looking forward to seeing you in the Poster and Exhibition Hall