Highlights of Poster Session II

Agnès Dominjon
IPN Lyon - CNRS - France
Poster Session II
Details

- 13 contributions (originally 22 - 9 withdrawn)
- Covered technologies and fields are:
 - XRay detectors: 6 contributions
 - Camera: 2 contributions
 - Avalanche Photo-diode: 1 contribution
 - Hybrid detectors: 1 contribution
 - Solid State detectors: 1 contribution
 - Other detectors: 2 contributions
Acknowledgments and disclaimer

- Many thanks to all contributors for their highlight slides
- Order of presentation is « random » – no preference!
- Apologies for possible inconsistencies – be tolerant!
XRay detectors

6 contributions
Motivation: Computed Tomography (CT) is a wonderful method to detect cancers but when cancers are marked by iodine it becomes difficult to be observed with high tube voltage diagnosis.

The idea: to exploit the energy information of X-rays in transmission measurements.

This work: a novel detector which measures X-rays as current and gives energy distribution of incident X-rays called transXend detector.

Method to deduce energy information with flat panel detector is shown on Poster 14.

1st → 3rd Generation CT:
- For measurement time reduction (human diagnostic)
- With CdTe flat panel detector + Al absorbers
Photon detection by an InSb compound semiconductor detector with reduced leakage current

Yuki Sato et al. – Kyoto University, Japan

Motivation: photon detector with compound semiconductor InSb in order to detect hazardous elements such as Li, Be and Pb (environmental preservation)

Why InSb? High detection efficiency
- High atomic numbers (In:49, Sb:51) and high density (5.78 g/cm³): Photon absorption efficiency
- Smallest band gap energy 0.6 ev (at room temperature): Energy resolution

This work: reducing leakage current by cooling and with changing the electrode design

Current-voltage curves
- This work: 24 K (●) and 73 K (▲)
- Leakage current was decreased

137Cs-gamma-ray measurement
- @ 4.5 K
- Gamma-ray was measured by the InSb detector

Details shown on Poster 25
Synchrotron radiation studies of spectral features caused by Te inclusions in CdZnTe

Conny Hansson et al. - European Space Agency/ESTEC, the Netherlands

- **CdZnTe (CZT):** recognised as a high energy X-ray and γ-ray detection medium due to its high stopping power and wide band gap.

- **Problem:**
 - detector perf. limited by defects in the crystal structure
 - spectroscopic performances are limited by Te inclusions

- **This study:** 10 mm thick CZT coplanar grid detector having large Te inclusions exposed to pencil beam synchrotron radiation in order to study spectroscopic features introduced by Te inclusions at different X-ray energies

- **Results:**
 - small inclusions <3µm: compensated by depth sensing techniques
 - larger inclusions: variation in collected charge carrier number
 - introducing trapping levels
 - affecting the electric field profile inside the detector
 - Explanations on Poster 95

- **Problem:** Spectral performance evaluated as a function of inclusion size

A. Dominjon - Highlights Poster II - NDIP 2011
Caliste-SO X-ray micro-camera for the STIX instrument on-board Solar Orbiter mission

Aline Meuris et al. - CEA / Irfu, France

- STIX (Spectrometer Telescope for Imaging X-rays): will provide information on the timing, location, intensity and spectra of accelerated electrons near the sun

- Caliste-SO: an hybrid component integrating the sensor material and dedicated front-end electronics for high resolution X-ray spectroscopy

- Applications: Hard X-ray astronomy: see Talk Caliste-256, session S14 Thursday PM → use advantages of small pixels and possibility to place several units side by side for a large focal plane
 - Solar physics: Caliste-SO on board Solar Orbiter ESA mission (phase B) → use advantages of a compact design, low power (new ASIC version: IDeF-X HD)

- Challenges for this device:
 - High count rate of solar flares (up to 10^5 counts/s/detector)
 - 1 keV FWHM @ 6 keV with large pixels (8 mm^2) moderate cooling (−20°C) and strong radiation level (10^{11} 10 MeV equivalent protons/cm^2 during the whole mission)
This work: study CdTe and Cd$_x$Zn$_{1-x}$Te radiation detectors with a non-destructive optical method which uses the effect of non-steady-state photoelectromotive force (photo-EMF).

Method: the non-steady-state photocurrents can be excited in widegap semiconductors illuminated by an oscillating light pattern. Such illumination is created by 2 coherent light beams one of which is phase modulated with frequency ω. This technique allows the direct transformation of phase modulated optical signals into the electrical current. A lot of photoelectric parameters can be measured: carriers' lifetime τ and mobility μ, diffusion L_D and drift lengths L_0, concentration of trapping centers N_D.

Experimental results:
- characterization of transport parameters of CdTe and CdZnTe
- $\mu\tau$-product calculated using experimental data

More results on Poster 153

<table>
<thead>
<tr>
<th></th>
<th>Dark conductivity</th>
<th>Photoconductivity</th>
<th>Diffusion length of holes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdTe</td>
<td>0.83x10$^{-9}$ $\Omega^{-1}cm^{-1}$</td>
<td>(1.1-2.5)x10$^{-9}$ $\Omega^{-1}cm^{-1}$</td>
<td>>18 μm</td>
</tr>
<tr>
<td>CdZnTe</td>
<td>0.64x10$^{-9}$ $\Omega^{-1}cm^{-1}$</td>
<td>(0.8-2.8)x10$^{-9}$ $\Omega^{-1}cm^{-1}$</td>
<td>5.9 μm</td>
</tr>
</tbody>
</table>
GaN detector development for particle and X-ray detection

Alan Owens et al. - European Space Agency/ESTEC, The Netherlands

- **GaN**: widely used in optoelectronics area, little work on its particle and X-ray detection properties

- **Properties**:
 - wide band gap = 3.39 eV
 - high density = 6.15 g cm⁻³
 - large displacement energy = 20 eV
 - thermal stability

 Should be an ideal radiation detection medium operating in extreme thermal and radiation environments

- **Devices**: Si-GaN PIN diodes
 - 2 µm thick epitaxial layer on p-type 4H-SiC substrate
 - 400, 500, 600, 700 µm diameter diodes tested
 - full depletion for biases 20-60 Volts
 - tests carried out from -40°C to +20°C

- **Spectroscopy measurements**:
 - Alpha response
 - Energy resolution ~ 10% FWHM
 - Hard X-ray response
 - 60 keV
 - No response!

Let's see on Poster 179
Camera

2 contributions
Wide-Field Single Photon Counting Imaging with an Ultrafast CMOS-Camera and an Image Intensifier
Gianmarco Zanda et al. – King’s College London

- **Aim:** to design a system with positional, temporal information and high sensitivity (single photon)

- **Setup:** Ultra-Fast CMOS camera coupled with a photon counting Image Intensifier (3-stage)
 - Acquisition with a pulsed laser allows luminescence decay measurements
 - Phosphor decay can be exploited for photon arrival timing below camera exposure time

- **Advantages:**
 - Ultra high frame rate
 - Single photon sensitivity, photon event is amplified BEFORE accumulation
 - Wide Field technique (positional information and faster than PMT scanning: parallel processing of all pixels)
 - High signal to noise ratio (yes/no in the event localization)
 - Temporal Information - photon arrival time with Microsecond Resolution
 - Centroiding techniques to improve spatial resolution but introduces fixed pattern noise (FPN)

Discussion on centroiding, timing of the events and FPN on Poster 181
Charge Diffusion Measurement in Fully Depleted CCD using X-rays
Ivan Kotov et al. - Brookhaven National Laboratory, USA

- **Context:** specialized CCD sensors are being developed for the Large Synoptic Survey Telescope. LSST requires sensor contribution to Point Spread function (PSF) to be small and well characterized.

- **Setup:** sensor PSF is determined by the lateral charge diffusion on the drift path from the CCD window to the gate. Use of an X-ray source (\(^{55}\text{Fe}\)) to measure charge diffusion.

- **Method:** charge distribution described by 4 parameters:
 - x- and y-position
 - sigma
 - total amplitude

 Criterion: parameters are determined if the cluster contains at least 4 pixels with amplitude above the noise.

 Clusters with sufficient signal to noise ratio selected as pixel “fired”.

- **Results:** distribution of sigma values measured:
 - with a prototype device (green)
 - with simulated X-rays (blue)

 Good agreement for the “window” peak.

More explanations on Poster 138
Avalanche Photo-Diode (APD)

1 contribution
Anomalous APD signals in the CMS ECAL

David Petyt et al. - STFC Rutherford Appleton Lab.

Setup: The main component of the Compact Muon Solenoid (CMS) to detect and measure the energies of electrons and photons from proton-proton collisions is the Electromagnetic Calorimeter (ECAL).
- ECAL consists of 75848 PbWO4 crystals, organized into a barrel and 2 endcap detectors
- Scintillation light emitted by the crystal is converted into electrical signals by Avalanche Photo-diodes (APDs) glued to the rear face of the crystal.

Problem: Anomalous signals, consisting of isolated large signal, have been observed during LHC 2009-11 data taking. “ECAL spikes” are observed to be proportional to the proton beam intensity.

Understanding: Spikes are ascribed to direct energy deposition by particles striking the APDs and causing occasionally large signals through direct ionization of the silicon.
- spike properties and rates
- Monte Carlo simulations
- laboratory and test beam

Used to understand the spikes origin

A method to reject these signals in the trigger has been founded

Revised method presented on Poster 109
Hybrid Photodetector

1 contribution
Use of Hybrid Photon Detectors in scintillations studies and imagin applications

Jiri A. Mares et al. - Institute of Physics, AS CR, Czech Republic

- **Detector**: HPMT = a photocathode + one Si-PIN diode used as an anode. Photoelectrons electrostatically focused on Si-PIN diode

- **Aim**: HPMT used in characterization of scintillating materials
 - energy resolution
 - non linearity
 - reliable photoelectron calibration
 - less noise respect to classical PMT's

- **Applications**:
 - largest use: at LHCb experiment at CERN at the RICH detectors for particle identification (500 HPD's used)
 - imaging application: γ-ray optoelectronic camera
 ISPA tube = YAP:Ce photocathode + array of Si-diode pixels

More details on Poster 37

A. Dominjon - Highlights Poster II - NDIP 2011
Solid State Detectors

1 contribution
Single photon avalanche diode radiation tests

Josef Blazej et al. – CTU Prague, Czech Republic

- Single Photon Avalanche Diode (SPAD): provided by Czech Technical University (structure on Silicon)
- Context: generally used in lidar or various ranging experiments recently planned for applications in deep space missions that is why radiation damage tests were carried out.
 - Expected source of radiation = trapped and solar protons and electrons and gamma ray
 - Expected to change after radiation = SPAD effective dark count rate (increasing)
 - Not expected to change = other parameters such as QE, breakdown voltage, speed...
- Tests using 2 radiations: proton radiation and gamma ray

1 - Indiana University Cyclotron Facility: 54 MeV energy protons

- low proton flux: no changes in DC rate
- high proton flux: DC increases from 0.3Mc/s to 1.6Mc/s
 - DC rate depends on the radiation flux
- slow annealing effects in time: decrease slope of 0.8Mc/s in 100 days after irradiation.

2 - Nuclear Research institute in Rez: 60Co source

- Gamma ray radiation did not caused any significant changes in diodes performance:
 - DC rate = 0.2Mc/s before and after irradiation

Measurements results on Poster 184
Other Photodetectors

2 contributions
First steps towards small prototype gamma camera based on wavelength shifting fibers
I.F.C. Castro and L.M. Moutinho et al. - i3n, Physics Dept, Univ. of Aveiro, Portugal

- **Context:** development of higher resolution gamma cameras is interesting in cancer diagnosis

- **Setup:**
 - Gamma camera:
 - based on optical fibers (1mm ø)
 - coupled to both sides of inorganic scintillation crystals (CsI-Na)
 - readout of the scintillation light by means of light guides, namely Wavelength Shifting Fibers
 - Spatial resolution = 1-2 mm FWHM

- **Test of small prototypes using collimated Co57 (122 keV)**
 - 12 fibers prototype with MaPMT: $V(MaPMT)= -800V$
 - 10 fibers prototype with SiPMs: $T \sim 20^°C, V_b$(common to all)$= -70.5V$

Position of maximum output signal for different collimator hole positions
New Micromesh Gas Detector for Gaseous Photomultiplier

F Tokanai et al. - Dept of Physics, Yamagata University, Japan

- **Gaseous PMT**: can achieve a very large effective area but moderate position and timing resolutions

- **Development of a New Micro Mesh Gas (Micromegas) detector**
 - fabricated by chemical etching in conical holes on the metal of 46 μm thickness
 - holes diameters = 80 and 120 μm - Pitch = 250 μm
 - drift and absorption region for X-rays = 5 mm
 - amplification region (between mesh and anode) where a high electric field is formed to induce electron avalanches = 150 to 200 μm

- **Performance test using X-rays (6keV)**
 - For Ne (90%) + CF4(10%) gaz mixture at 1 atm
 - Gain up to 2x10^4 for V_{applied} = 500V
 - Energy resolution of 18%

- **Performance test using UV light**
 - Development of a gaseous PMT composed of a CsI photocathode and the Micromegas detector
 - Gain up to 2x10^4 for V_{applied} = 500V
 - Encouraging results to develop a gaseous PMT with a bialkali photocathode sensitive to visible light!

[Poster ID 45]
Conclusions and perspectives

WELCOME TO POSTER SESSION II!

All contributors are looking forward to seeing you in the Poster and Exhibition Hall