Photocathode aging in microchannel plate PMT

M.Yu.Barnyakov

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Outline:

- MCP PMT and its application in HEP
- Study of the photocathode aging
- Lifetime of the best sample
- Summary

Microchannel plate PMT

Ø ~10µm

Immunity to magnetic field
Excellent time resolution
Good space resolution
Limited counting rate capability
Short lifetime

5x5 cm

2x2 cm

Ekran FE Ekran E B B Mm B Mm

M.Barnyakov

ASHIPH counters for KEDR

- π/K separation in momenta range
 0.6 ÷ 1.5 GeV/c
- Aerogel n=1.05 (1000 litres)
- 160 MCP PMT
- Magnetic field up to 1.5 T

80 counters have been working since 2003

NDIP11, Lyon, 06.07.11

3

ASHIPH counters for SND

- π/K separation in momenta range 300 ÷ 870 MeV/c
- Aerogel n=1.13
- 9 MCP PMT
- No maanetic field

TOF counters for CMD-3

- Antineutron identification
- BC-408 scintillator (16 bars)
- 32 MCP PMT

SND and CMD-3 are working at VEPP-2000 e⁺e⁻ collider in BINP

M.Barnyakov

Future MCP PMT applications

MCP PMT under investigation

Manufacturer: "Ekran FEP" (Novosibirsk) Borosilicate glass window Alkali-antimonide photocathode Maximum QE at λ =500nm Two MCPs with channel diameter of 7 μ m Channel bias angle 13° Single anode

Gain decrease at high counting rate

QE degradation at different counting rates

The higher counting rate the slower QE degradation per unit of cathode charge

The higher counting rate the faster QE degradation per unit of anode charge

QE degradation vs. charge from 1st MCP

Enhancement of MCP degassing: gain

3200

U_{MCP}, V

Enhancement of MCP degassing: aging

Photocathodes: spectral response

Na₂KSb : Dark rate < 0.5 kcps/cm²

Na₂KSb(Cs) : Dark rate ~ 0.5 kcps/cm²

Na₂KSb(Cs) + Cs : Dark rate ~ 5 kcps/cm²

Na₂KSb(Cs) + Cs₃Sb : Dark rate ~ 50-100 kcps/cm²

Photocathodes: aging comparison

Best sample: photocathode lifetime

At Rate ~ 10 Mcps/cm² LifeTime (-20% @ QE_{MAX}) = 3.3 C/cm²

and much higher at 2 Mcps/cm²!

Best sample: comparison with old tubes

Lifetime improved by one order of magnitude (at least)!

Summary

- QE degradation is proportional to the charge extracted from the 1st MCP (at high counting rate).
- Enhancement of MCP electron scrubbing did not affect MCP gain and decreased the photocathode aging rate.
- Optimization of the photocathode formation process can decrease aging rate by order of magnitude.
- The photocathode lifetime of the best MCP PMT sample is more than 3.3 C/cm² of accumulated anode charge.

Thank you!

FARICH for Super $c\tau$

M.Barnyakov

Experimental setup

NDIP11, Lyon, 06.07.11

M.Barnyakov

Calculation of 1st MCP current

MCP PMT #91110: lifetime

Lifetime measurements at "low" counting rate: $2 \cdot 10^6 - 10^7 \text{ s}^{-1} \text{ cm}^{-2}$

MCP PMT lifetime comparison

