

A New Approach to Photocathode Development: From the Recipe to Theory Inspired Design

Klaus Attenkofer¹, Marcel Demarteau¹, Henry Frisch^{1,2}, Seon Woo Lee¹, Howard Padmore⁵, **Oswald Siegmund**³, John Smedley⁴, Theodore Vecchione⁵, Junqi Xie¹, Zikri Yusof¹

- ¹ Argonne National Laboratory
- ² University of Chicago
- ³ Space Science Laboratory
- ⁴ Brookhaven National Laboratory
- ⁵ Lawrence Berkeley National Laboratory

Outline

- Motivation
- What is "theory inspired growth"
- X-rays, a tool to visualize the structure of films
- Conclusion

Selection of Cathode Material

NDIP 2011

- Multi-alkali are
 - "Obvious" choice in the wavelength range around 400nm
 - Most cost-efficient to produce (Thin-filmtechnology)
- Selection criteria:
 - Process compatibility
 - Wavelength response
 - Conductivity (large area)
 - High Quantum efficiency
 - Low dark current
 - Robustness (device life time)
- Options:
 - CsK₂Sb
 - KNa₂Sb
 - Cs₃Sb

What Determines the Quantum Efficiency

FIG. 1. Schematic diagram illustrating fundamental growth processes controlling microstructural evolution: nucleation, island growth, impingement and coalescence of islands, grain coarsening, formation of polycrystalline islands and channels, development of a continuous structure, and film growth (see Ref. 9).

- Three step model:
 - Absorption
 - Transport to the surface
 - Emission through the surface barrier
 - (reflection losses)
- Ways to manipulate the material:
 - Absorption (band gap & DOS):
 - Band structure by composition variations
 - Transport (scattering):
 - Electron-electron scattering negligible (if not highly doped)
 - Electron-phonon scattering; very difficult to manipulate
 - Electron-impurity scattering; fully growth related
 - Symmetry break (electric fields)
 - Emission properties
 - Surface composition
 - morphology

A Few Thoughts about Thin-Film Growth

- Film morphology is responsible for
 - Lateral and transversal diffusion rate
 - Impurity scattering
 - Speciation distribution trough out the film

Recipe parameters and film structure are strongly correlated

Examples for band-gap variations:

K₃Sb

Eg: 1.1eV, 1.3eV, 1.4eV (dependent on crystalline phase)

Roadmap to Optimize Growth Recipe

Correlation between functionality and structure

- The absorption of photons and generation of photoelectrons —
- The transport of the electrons from the point of generation to the surface _
- The escape from the surface
- **Correlation between Recipe and Structure**
 - Temperature / growth rate —
 - Composition of materials _
 - Grain size and thickness of the film
- In situ Visualization Tool of Microscopic Structure
 - X ray Diffraction: Crystallographic structure, chemical composition, grain size, crystalline orientation
 - X ray Reflectivity: Control of thickness, various defects, surface roughness

X-rays, a tool to visualize the structure of films In-situ X-ray Scattering

Data-Acquisition & Processing

Azimuthal Integration and fit of peak positions -

Single shot reveals full structure

- Time resolution ~ 100ms
- Perfect for insitu experiments
- However: evaporator similar to production condition
- Data-Analysis:
 - Calibration with known standard (CeO₂)
 - "Empty"-pattern (B33)
 - Sb-on B33 pattern
 - Result: Difference showing only
 Sb-film and changes on glass substrate

Thickness Measurement of the Film in Real-Time

Vertical cut reveals thickness and vertical roughness of film (FFT)

Horizontal cut reveals lateral island-size

- Film thickness and roughness was determined for
 - Sb-fims (different substrate conditions)
 - Sb-film and subsequent Kevaporation
- Currently systematic investigations of
 - different growth conditions
 - surface preparation (interlayer)
- Extracted information (with about 1s time resolution)
 - Thickness
 - Roughness
 - In-plane "partical" size distribution

NDIP 2011

K-growth on Sb: One Example (Boing-recipe)

Sb-film (18nm)

K-evaporation started

K-evaporation goes on

- Sb film starts with about 3 nm (consistent with AFM measurements)
- K-evaporation starts:
 - Roughness is increasing
 - Single peak shows that K instantaneously (1s) reacts and intermixes
 - Ongoing evaporation of K:
 - Film shows extreme strong roughness (no peak)
- Final Film:
 - Film roughness decreases with increasing evaporation

Currently in progress: More quantitative analysis and systematic recipe variations

Final film

NDIP 2011

Δ

Crystal growth behavior of Sb-film (Wide Angle X-ray Scattering WAXS)

4-27-2011 Scan 186: a2scan nu 4 40 zeta 2 20 36 10 Image Center: 271 x 97 Sb Film on Mo Substrate Thickness: 80 Å (guess) Deposited at >> 200 °C (guess)

Sb film as deposited

Sb film after heating

- Peak-ratio reveals texturing (pre-orientation of crystallites [Sb 003orientation])
- After heating:
 - Different crystal orientation show different sticking coefficient
 - Textured crystals "survive" longer

Is multiple applications of heating and evaporations a way to increase the texture and tailor crystal size of the original Sb-film (key to ultra high QE)?

What Happens after K- and Cs-Evaporation

Sb Film on Mo Substrate

[Sb 003] Its [AU] 38.2° [Sb 006] 20.1° 1000 [Sb 101] 40.95° 22.95° [Sb 202] [Sb 012] 100 11.25° 22° [xxx] [xxx] 10 20 25 35 40 20 [Deg]

Original Sb-film

Cathode after

K- and Cs-

Evaporation

- High indexed reflections disappear:
 - Indication that crystallite gets smaller or very strained
- Main reflections show reduced intensity
 - Smaller crystals but still
 Sb-phase present
- Strong background observable:
 - Not clear which
 Cs_xK_ySb_n-phases are
 produced
 - Is active cathode material in amorphous phase?

Is K- and Cs- reacting on the grain boundaries with strongly increased strain (like Fe-oxidation?)

4-27-2011

Conclusion: Is Theory Inspired Growth Possible

- Correlation between functionality and structure
 - In principle known
 - Phenomenological model available (no first principle calculations)
- Correlation between Recipe and Structure
 - Large parameter space is available
 - Recipe shows strong correlations between individual steps
- In situ Visualization Tool of Microscopic Structure
 - All necessary microscopic film parameters can be visualized in real time

The next big steps:

- Proof of principle has been performed and shown.
- Understanding correlations between process parameters and microscopic structures of known recipes.
- Developing new strategies in thin-film technology to create high quantum efficiency cathodes.