MOXIE Movies Of eXtreme Imaging Experiments

Jacob Mendez¹, Steve Balzer¹, Scott Watson¹, Mike Duncan²

Los Alamos National Laboratory, Los Alamos, NM USA¹

Varian Medical Systems, Lincolnshire, IL USA²

LAUR-11-03730

UNCLASSIFIED

Slide 1

Imaging System Overview

Log (Signal)

UNCLASSIFIED

Illustration of DQE

Fro. 1. Number of photons, $3 \times 10^{\circ}$; high-light luminance (foot-lamberts), 10^{-6} .

FIG. 4. Number of photons, 7.6×10⁴; high-light luminance (foot-lamberts), 2.5×10⁻⁴.

FIG. 2. Number of photons, 1.2×10⁴; high-light luminance (foot-lamberts), 4×10⁻⁴.

FIG. 5. Number of photons, 3.6×10⁴; high-light luminance (foot-lamberts), 1.2×10⁻³.

Los Alamos

NATIONAL LABORATORY

EST. 1943

۲

FIG. 6. Number of photons, 2.8×10⁷; high-light luminance (foot-lamberts), 9.5×10⁻⁹.

UNCLASSIFIED

Slide 3

Collaborators

2010 R&D 100 Award Winner

UNCLASSIFIED

Slide 4

Overview

- MOXIE combines high-sensitivity with high-speed and large frame depth.
 - The combination of these characteristics are truly unique and have been demonstrated successfully with MOXIE.
 - MOXIE is capable of capturing a staggering 4000 frames at 20 Million frames per second with sub µR sensitivity.
 - With multiple MOXIE modules, 30+ frame, high spatial and temporal resolution, movies of evolving physical processes can be obtained. Such data is extremely beneficial to the validation of simulation codes.
 - MOXIE can be used to image protons, neutrons gamma rays and visible light.
 - With MOXIE, users can obtain full start to finish movies of high-speed phenomena.

UNCLASSIFIED

Slide 5

Device Architecture

UNCLASSIFIED

Slide 6

MOXIE (Movies of eXtreme Imaging Experiments)

Worlds Fastest Movie Camera

- <1uR x-ray Sensitivity</p>
- 20 MFPS Frame Rate
- 4096 Frame Depth
 - expandable
- Diverse Capabilities
 - X-Rays
 - Protons
 - Neutrons
 - Visible Light

UNCLASSIFIED

Slide 7

LSO Scintillator

- 45 cm diameter, 1.1 mm pitch, 4 cm thick.
- Single ~45 ns time constant.
- High light output.
 - ~25,000 photons/MeV.
- High Density.
 - 7.4 g/cm³

The "Side Lit Flyer Plate" Experiment

- Purpose: To capture a 20 MFPS movie of an explosively driven event. The data will demonstrate the temporal resolution, and high-sensitivity of MOXIE.
- Successfully executed on July 1, 2010
 - Yielded an unprecedented, 50 nsec frame interval, 100 µsec duration, movie of a 2.54mm aluminum plate driven by a 356g explosive main charge and a line initiated booster.

UNCLASSIFIED

Slide 9

Experimental Setup

- X1 Identity Lens
- 120 mm FOV

UNCLASSIFIED

Slide 10

Camera Setup

UNCLASSIFIED

Slide 11

Shot Design

UNCLASSIFIED

Slide 12

Shot Design

UNCLASSIFIED

Slide 13

Results

- MOXIE can yield an equivalent amount of data in a single experiment that would have previously required dozens to hundreds of experiments.
 - Unprecedented time resolution and frame depth.
 - High sensitivity.
 - Experimental flexibility.
 - Ease of integration.
 - Portable.
 - Expandable.
 - Low cost per frame pixel

UNCLASSIFIED

Slide 15

Device Characteristics

PARAMETER	MOXIE
FRAME DEPTH	4,096
FRAME RATE	20,000 Mfps
DETECTION CAPABILITIES	x-rays , \mathbf{p}^+ , neutrons, visible light
X-RAY SENSITIVITY	< 1 µR
X-RAY QE	50%
VISIBLE QE	85%
ACTIVE AREA	29 CM ²
PIXEL FORMAT	32X32/MODULE
DYNAMIC RANGE	12 BITS @ 20 MHz
	16 BITS @ 100 kHz
TRIGGER TYPE	ASYNCHRONOUS, SYNCHRONOUS, POST EVENT

EST. 1943

UNCLASSIFIED

Slide 16

Questions

UNCLASSIFIED

Slide 17

