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In the framework of the ALICE upgrade program we are investigating the possibility
to build a new RICH detector allowing to extend the particle identification for hadrons up
to 30GeV/c .lt is called VHMPID.
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The VHMPID should be able to identify, on a track-by- track basis, protons enabling
to study the leading particles composition in jets (correlated with the 10 and /or y
energies deposited in the electromagnetic calorimeter).



The suggested detector will consist of a gaseous radiator (for

example, CF, orC,F,, ) and a planar gaseous photodetector
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There are two options for planar photodetectors which are
currently under evaluation. \E
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The aim of this work is to build a
Csl-TGEM based RICH
prototype, perform it beam test
and compare to the MWPC
approach




TGEM

TGEM is a hole-type gaseous multiplier based on standard printed circuit boards
featuring a combination of mechanical drilling (by a CNC drilling machine) and etching techniques.

Thickness: 0.45 mm
Hole d: 0.4 mm
Rims: 10 ym

Pitch: 0.8 mm
Active area: 77%

100mm




The operation principle of the Csl coated triple
TGEM (Csl -TGEM)
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TGEMs have several attractive features compared to ordinary GEMs:

1) ~10 times higher gains

2) robustness- capability to withstand sparks without being destroyed

3) itis a self- supporting mechanical structure making their use convenient in large detectors



GEM
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Csl-TGEMs, have some
advantages, over MWPC for
example:

® Csl-TGEM can operate in badly
quenched gases as well as in
gases in which are strong UV
emitters. This allows to achieve
high gains without feedback
problems. This also opens a
possibility to use them in
unflammable gases or if necessary
using windowless detectors (as in
PHENIX)

® In some experiments, if
necessary Csl-TGEMs, can
operate in “handron blind mode”
with zero and even reversed
electric field in the drift region which
allows strongly suppress the
ionization signal from charged
particles (PHENIX)




Design of the Csl-TGEM
based RICH prototype
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The top view of the RICH prototype (from the electronics side)
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View from the back plane




Csl side




Drift meshes (three independent grids)
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Voltage dividers
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There was a possibility to independently observe analog signals from any of electrodes of any TGEM and
if necessary individually optimize voltages on any TGEM




Six triple TGEMs were assembled using a glow box inside the RICH prototypes gas chamber.



Front view

The RICH prototype has windows in front of each triple TGEM allowing to irradiate the detectors ether with
the radioactive sources such as %Fe or °0Sr or with he UV light from a Hg lamp




Laboratory tests



Before the installation to the RICH detector, each TGEM
was individually tested in a separate small gas chamber.

In these tests we mainly identified the maximum
achievable gains when the detectors were irradiated
with the 5°Fe source and with the UV light.




Summary of single TGEMs
performance
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Typical results of gas gain measurements for triple Csl-TGEMs
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Measurements were performed when the detectors were simultaneously irradiated with
5Fe and UV light and °°Sr source



Stability?
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We have solved the stablility problems by

constantly keeping some voltages over
TGEMs
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QE measurements before CsI-TGEM installation into the RICH prototype

Graph2D

Normalized current (au)

The QE value is about 16% less than in the case of the best Csl-MWPC




Beam test



L B e Scintillator

Our proximity focusing TGEM-based RICH prototype installed at CERN T10 beam test facility
(mostly ~6 GeV/c pions)







Some results



Single events display
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Ne+10%CF, (overlapping events, rad. thickness 15 mm)

Summed event display, Run: 3689 Event: 27811
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May 2011 beam test. Raw data, no noise removal




Some examples of data
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Four triple TGEMs together
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After corrections on geometry and nonuniformity of the detector response the
estimated mean total number of photoelectrons per event is about 10.2
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What was achieved in the past with the CsI-MWPC (radiator 15mm)?
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QE scan after the beam test
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Conclusion from the scan: the QE of the Csl layer on the top of
TGEMs is practically the same as before our tests - about 16% less
than in the case of good MWPC - so corrected on this the total
number of expected p.e. will be around 16-17-close enough to the
MWPC data




Developing the simulation
program



Some details, how simulation was done.

Input parameters: geometry, n-index, gas (ionization, diffusion), E-field,
Average Gas Amplification, FEE parameters,...

Primary ionization: track, Fe55 (position in a space of each e-), single
photo-electron from Csl on a top of a first foil (GEANT-3 for UV production,
transport and Csl QE)

Transport of each e- to nearest hole in first foil (probability and position in
a hole)

Gas amplification; Polya distribution and “some special parameters”.
Transfer of each e- after gas amplification step to next foil (hole selection)
Repeat GA and Transport steps for second and third foil.

Collect electrons on pad (strip) structure

Add FEE noise and response for each (“active”) pad

Threshold to select “active” pads.

Cluster finding and reconstruction.



Some preliminary results of the simulation
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Conclusions:

e For the first time Cherenkov rings were detected with Csl-
TGEMs

e The mean number of detected photoelectrons is the same
as expected from estimations

e Thus, preliminary It looks that TGEM is an attractive option
for the ALICE VHMPID: it can operate in inflammable gases
with a relatively high QE, it has a fast signals and cetera

e Of course, the final choice of the photodetector for VHMPID
will be based on many considerations, for example MWPC
approach has its own strong advantage: it is a well proven
technology
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The main advantages of MWPC- it is a proven technology

The current ALICE/HMPID Detector
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Rate dependance
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Triple TGEM is inside this general limit!.. So at the beam test we should not expect an unlimited gain



Measurements with 55Fe

Ne+10%CH4 raw data
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The gas flow at the beam test was 27/3



Measurements with 55Fe

Ne+38%CH4
10000 -
100 =" 9/0.8
10
1 \ \ \ \ \ \

580

Gain 2x10E5

signal



Signal (mV)

10000

1000

100

10

Ne+10%CF4, raw data

27/3

18/2

580

600 620
Volatge (V)

640

660

No flow dependence in the given region




	Development and tests of a large area CsI-TGEM-based RICH prototype
	Diapositive numéro 2
	The suggested  detector will consist of  a gaseous radiator (for example, CF4 orC4F10 )  and a planar gaseous photodetector 
	There  are two options for planar photodetectors which are currently under evaluation:
	The aim of this work is to build a CsI-TGEM based RICH prototype, perform it beam test and compare to the MWPC approach
	TGEM 
	The operation principle of the CsI coated triple TGEM (CsI -TGEM) 
	CsI-TGEMs, have some  advantages, over MWPC for example:�� ● CsI-TGEM can operate in badly quenched gases  as well as  in gases in which are strong UV  emitters. This allows to achieve high gains without feedback problems. This also opens a possibility to use them in unflammable gases or  if necessary using windowless detectors (as in PHENIX)� ● In some experiments, if necessary CsI-TGEMs, can operate in “handron blind mode” with zero and even reversed electric field in the drift region which allows strongly suppress  the ionization signal from charged particles (PHENIX)
	Design of the CsI-TGEM based RICH prototype
	Diapositive numéro 10
	Diapositive numéro 11
	View from the back plane
	Diapositive numéro 13
	Diapositive numéro 14
	Diapositive numéro 15
	Diapositive numéro 16
	Diapositive numéro 17
	Laboratory tests
	Diapositive numéro 19
	Summary of single TGEMs performance
	Diapositive numéro 21
	Diapositive numéro 22
	We have solved the stability problems by constantly keeping some voltages over TGEMs�
	Diapositive numéro 24
	Beam test
	Diapositive numéro 26
	Diapositive numéro 27
	Some results
	Diapositive numéro 29
	Ne+10%CH4�(overlapping events, radiator thickness 10mm)
	Diapositive numéro 31
	Diapositive numéro 32
	Diapositive numéro 33
	Diapositive numéro 34
	Diapositive numéro 35
	Diapositive numéro 36
	QE scan after the beam test
	Developing the simulation program
	Diapositive numéro 39
	Diapositive numéro 40
	Conclusions:
	Aknowledgments:
	Spare
	Diapositive numéro 44
	Diapositive numéro 45
	Diapositive numéro 46
	Diapositive numéro 47
	Diapositive numéro 48

