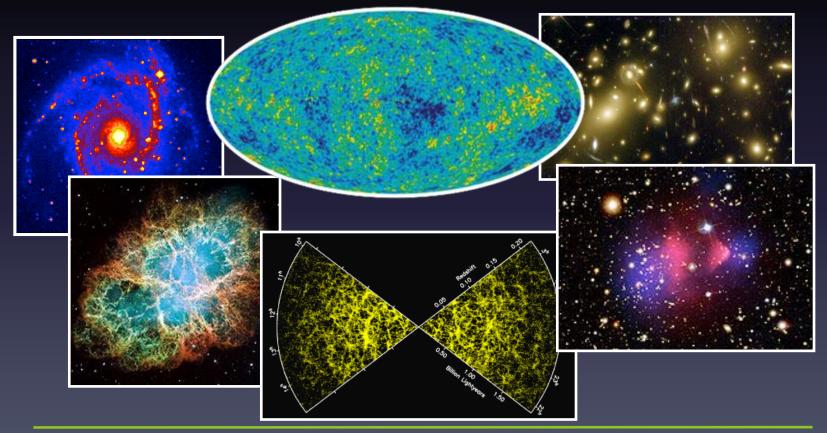
AIM-CEA Saclay,

Signal and Image Processing in Astrophysics

œ

Sandrine Pires sandrine.pires@cea.fr



NDPI 2011

Image Processing : Goals

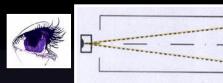
Image processing is used once the image acquisition is done by the telescope

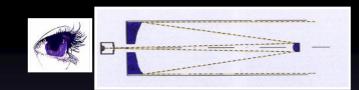
 \checkmark Correct from the problems encountered during acquisition:

- \checkmark Reduce the instrumental and atmospheric effects
- \checkmark Reduce the observation noise
- ✓ Deal with missing data (partial sky coverage, defective pixel...)
- ✓ Extract the useful information to enable physical interpretation
 ✓ Compressed sensing
 ✓ Source separation

=> Impact the instrument design

How to reduce atmospheric and instrumental effects ?



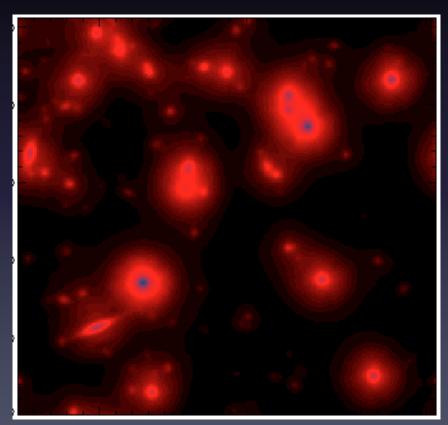


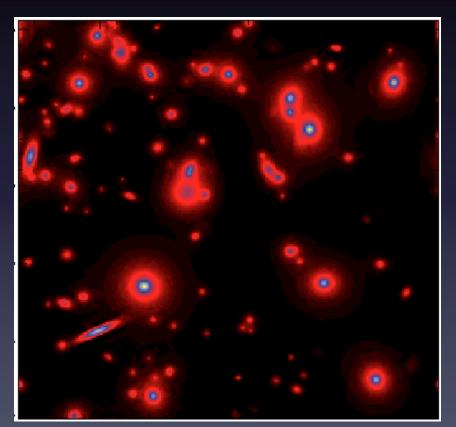
Great Refractor (76 cm) at Nice observatory

Hale Telescope (5 m) at Mont Palomar observatory (alt. 1706 m), California

Hubble Space Telescope (2.4m)

PSF correction I = O * H

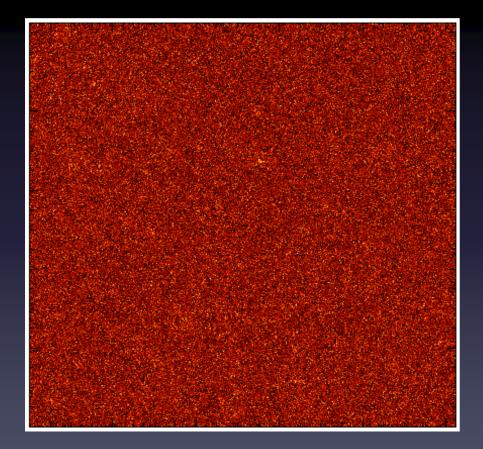




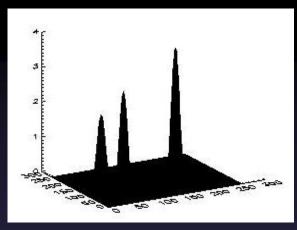
Observed image

Convolved image

How to reduce the observational noise ?



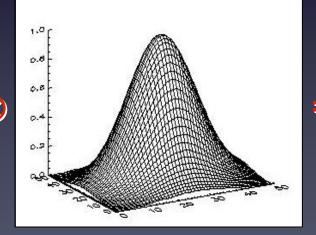
Standard methods based on a linear filter (*i.e. Gaussian filtering*)



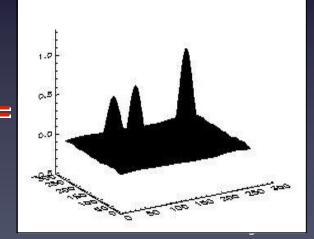
Signal



Signal + noise

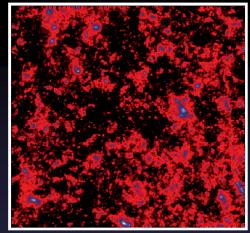


Gaussian function (σ)

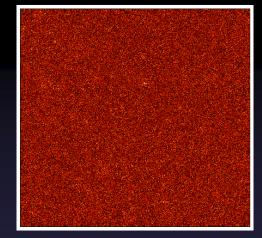


Filtered signal

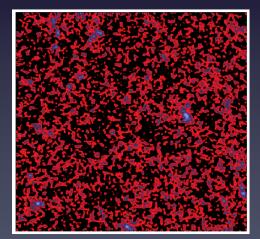
Standard methods based on a linear filter (*i.e. Gaussian filtering*)



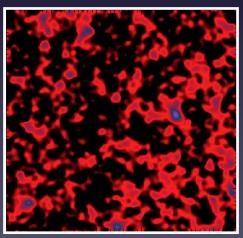
Signal



Signal + noise



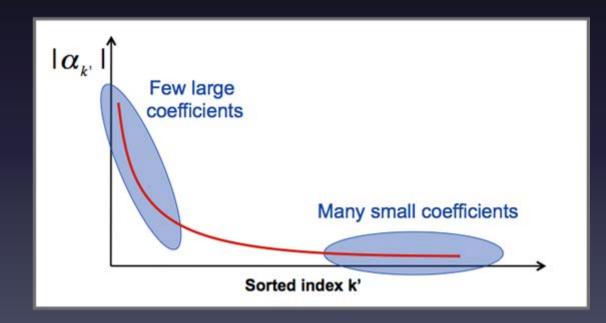
Gaussian filtered ($\sigma = 2$ *pixels*)



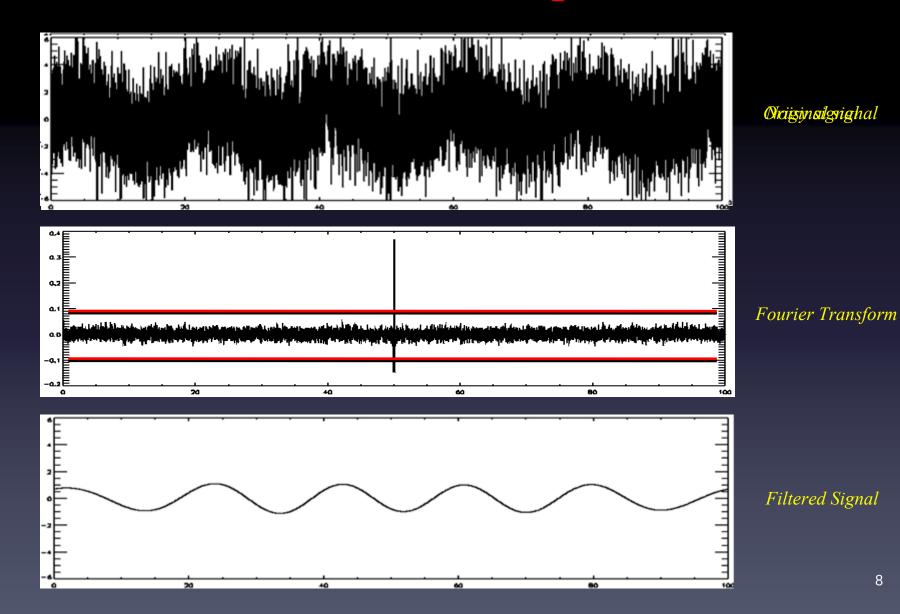
Gaussian filtered ($\sigma = 5$ *pixels*)

Methods based on sparsity Considering a transform : $\alpha = \Phi^T X$ A signal X is sparse in a basis Φ

if most of the coefficients α are equal to zero or close to zero



Basic Example



8

Signal and image representations

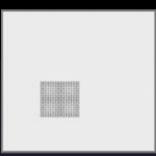
✓ Local DCT :
 ✓ Stationary textures
 ✓ Locally oscillatory

✓ Wavelet Transform

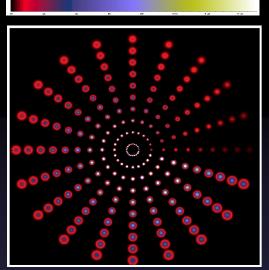
- ✓ Piecewise smooth
- ✓ Isotropic structures

✓ Curvelet Transform

- ✓ Piecewise smooth
- ✓ Edge structures



Adapted Representations



Test image 1

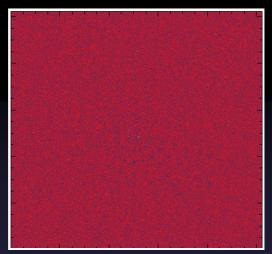
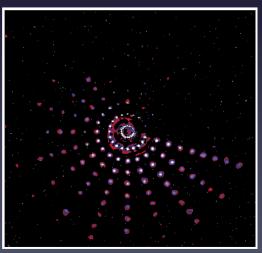
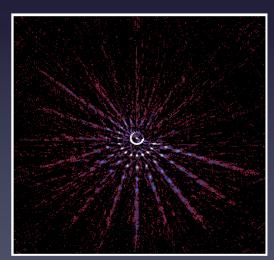


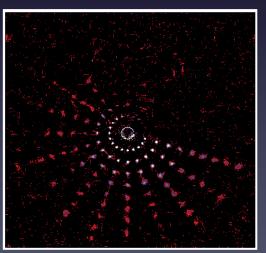
Image test 1 + noise



Wavelet filtering



Ridgelet filtering



Adapted Representations

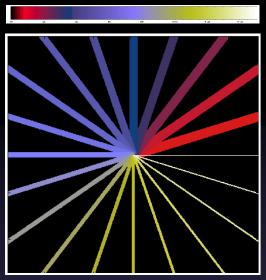


Image test 2

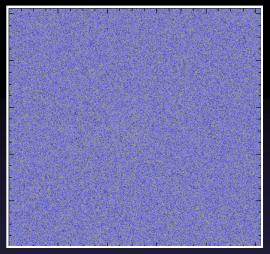
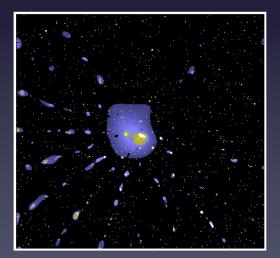
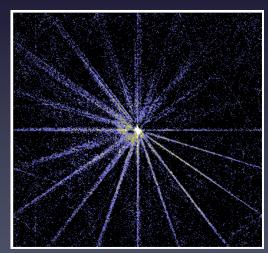


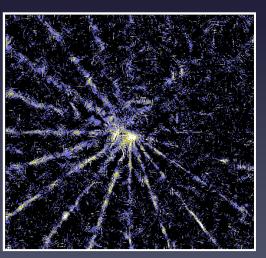
Image test 2 + noise



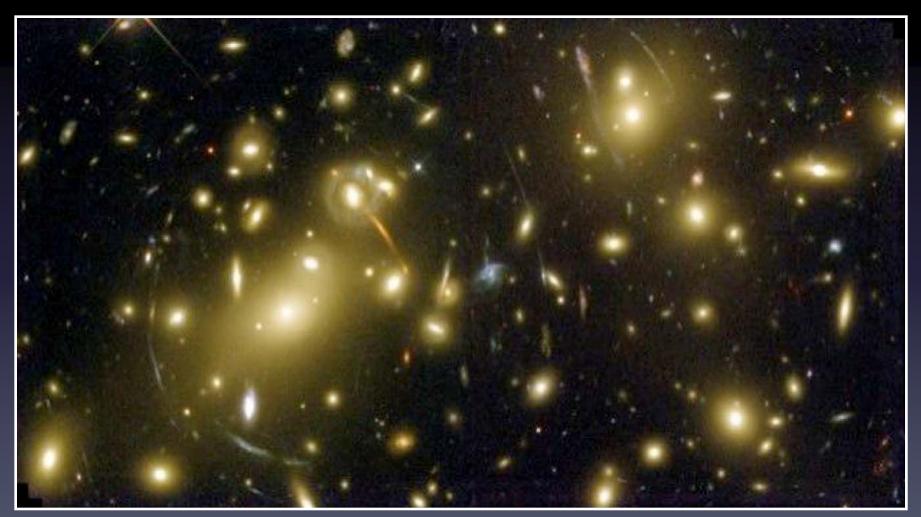
Wavelet filtering



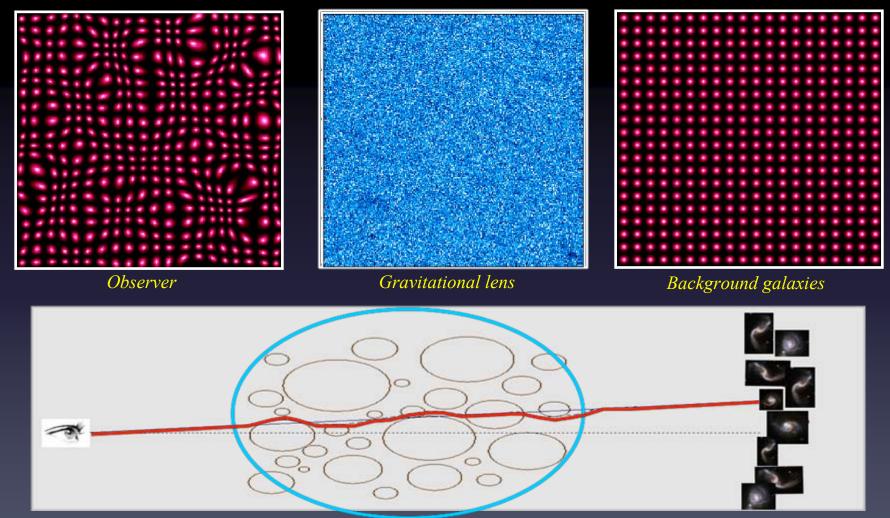
Ridgelet filtering



Gravitational Lensing effect observed by the Hubble Space Telescope



Weak Gravitational Lensing



GRAVITATIONAL LENS

Dark matter Map

- HST observations -



Missing data

✓ Causes of missing data:

- ✓ Occurrence of defective or dead pixels
- ✓ Partial sky coverage due to problems in the scan strategy
- ✓ Saturated pixels
- \checkmark Absorption or masking of the signal by a foreground

✓ Problems caused by missing data:

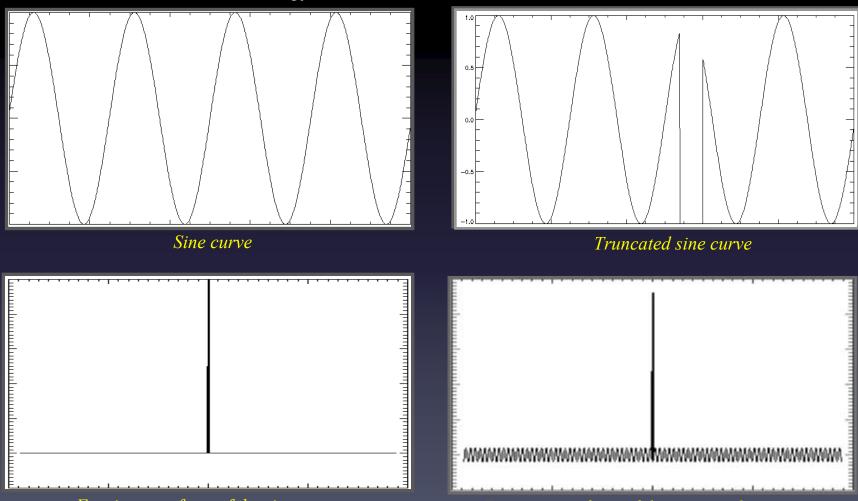
- \checkmark Bias and decrease on statistical power
- \checkmark Distortions in the frequency domain due to abrupt truncation
- ✓ Other edge effects in multi-scale transforms

 \checkmark How to deal with missing data?

 \checkmark Correction of the measure by the proportion of missing data

✓ Other corrections specific to a given measure (i.e. MASTER for power spectrum estimation)

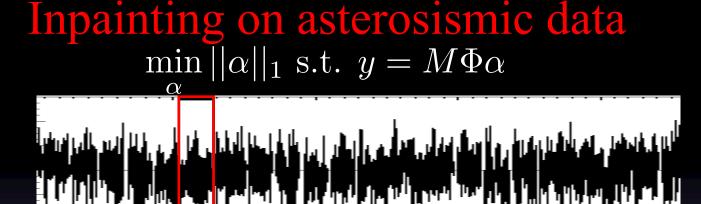
✓ Inpainting methods



Fourier transform of the sine curve

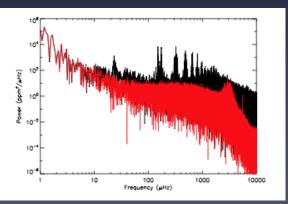
Fourier transform of the truncated sine curve 16

Light curve (time series)

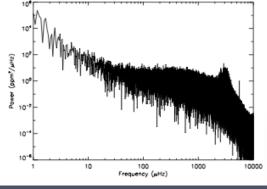


Zoom on the Light curve

Power spectrum

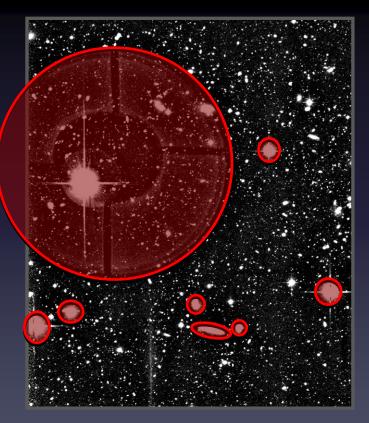


Original (red) and masked (black) data

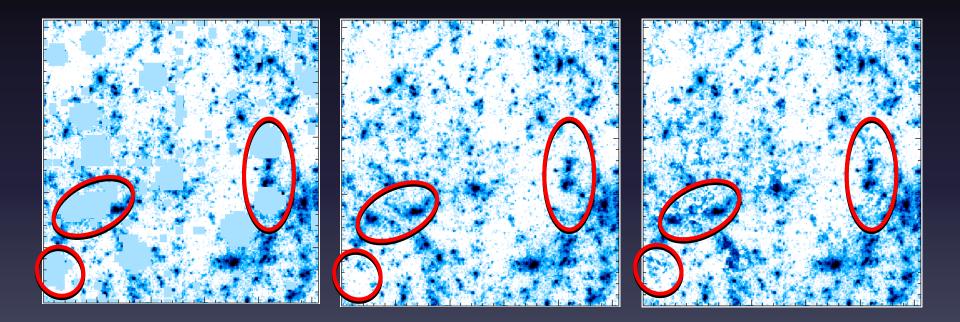


Inpainted data (black)

Missing data In Weak Lensing

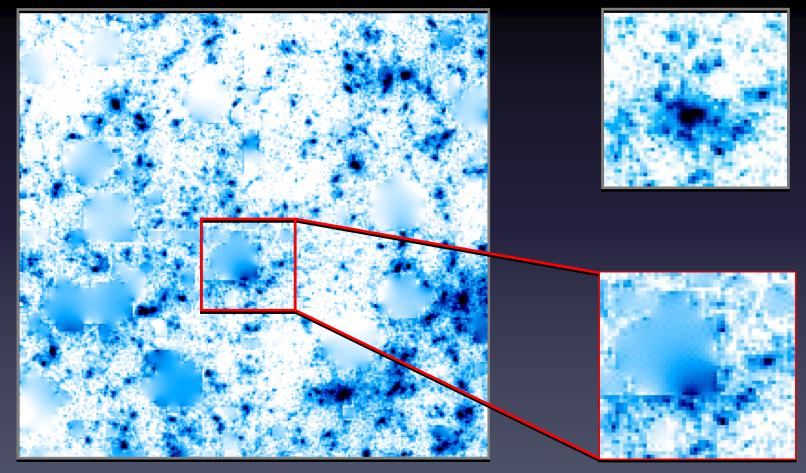


Inpainting in Weak Lensing data



Which image is the original one?

Inpainting in Weak Lensing data $\min_{\alpha} ||\alpha||_1 \text{ s.t. } y = M\Phi\alpha$



Compressed sensing

✓ Shannon-Nyquist sampling theorem :

 \checkmark No loss of information if the sampling frequency is two times the highest frequency of the signal

 \checkmark The number of sensors is determined by the resolution

 \Rightarrow Can we get an exact recovery from a smaller number of measurements ? YES !

✓ Compressed sensing theorem :

✓ No loss of information if :

- the signal is local and coherent.

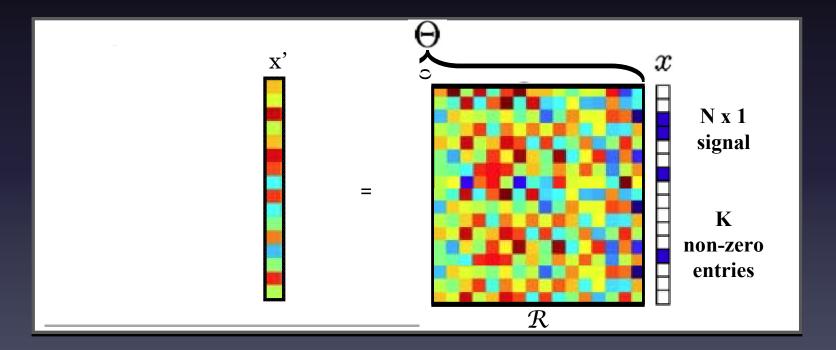
- the measurements are global and decoherent.

✓ The number of measurements is about K. log(N) where K is the number of non-zero entries in the signal.

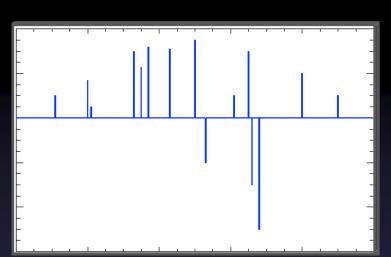
Compressed sensing: A non linear sampling theorem

"Signals (x) with exactly K components different from zero can be recovered perfectly from ~ K log N incoherent measurements"

Replace samples by few linear projections $y = \Theta x = \mathcal{MR}x$

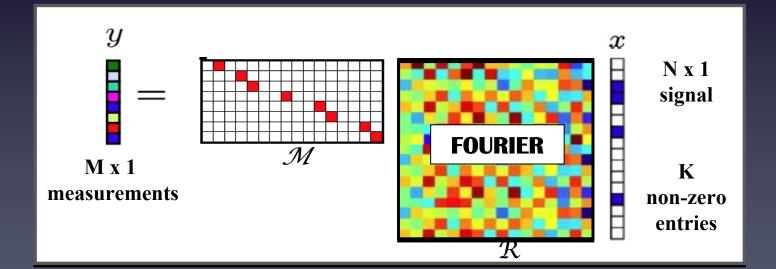


Reconstruction via a non linear processing: $\min_{\alpha} ||\alpha||_1$ s.t. $y = \Theta x$



Compressed Sensing

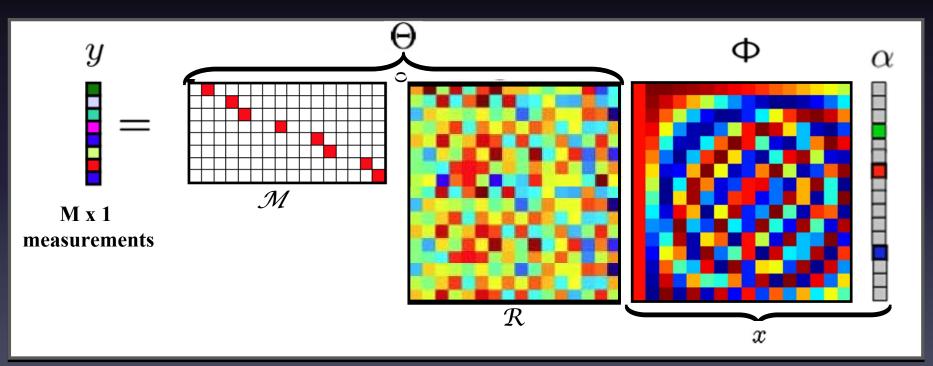
Signul rited a haths fammers the or begin i lients



Soft Compressed sensing:

"Sparse signals (x) with exactly K coefficients (α) different from zero can be recovered perfectly from ~ K log N incoherent measurements"

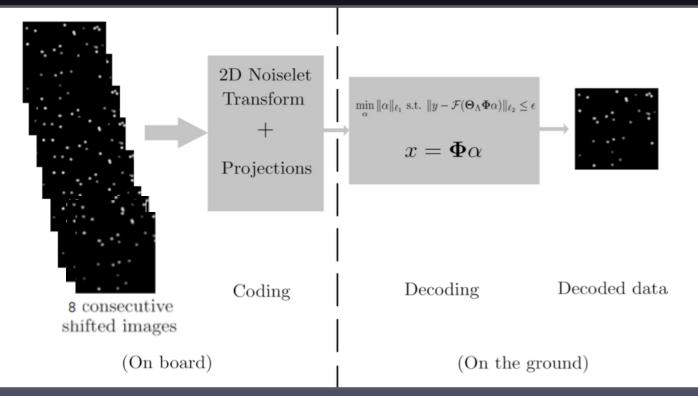
$y = \Theta x = \Theta \Phi \alpha$



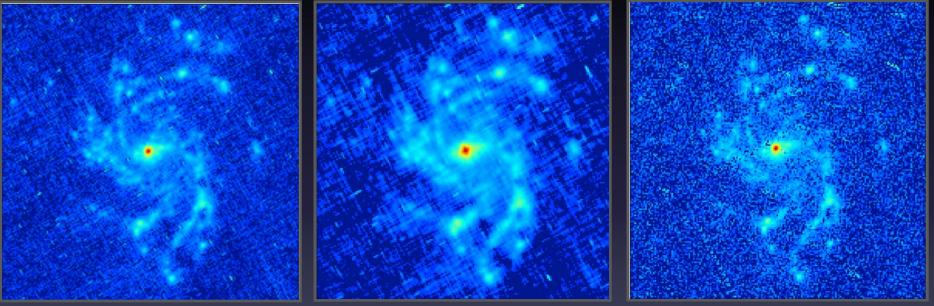
Reconstruction via a non linear processing: $\min_{\alpha} ||\alpha||_1$ s.t. $y = \Theta \Phi \alpha$

Compressed sensing to transfer spatial data to the earth

A field is obtained every 25 min and is composed by 60.000 shifted images (16x16 pixels) The official pipeline consists of only transmitting an averaged image obtained from 8 consecutives shifted images.



Compressed sensing to transfer spatial data to the earth Good solution for on board data compression (very fast)



Map from uncompressed data

Official pipeline reconstruction: averaging

Very robust to bit loss during transfer All measurements are equally (un) important

Compressed sensing reconstruction

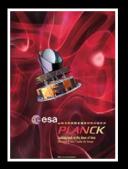
Source Separation

X = A S

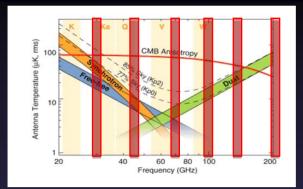
4 sources

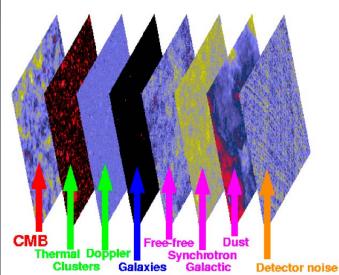
4 random mixtures

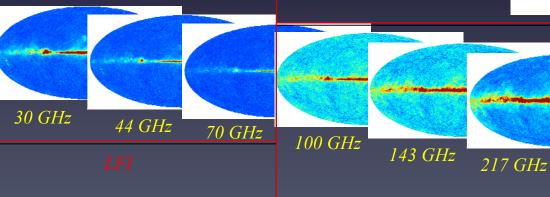
Source Separation

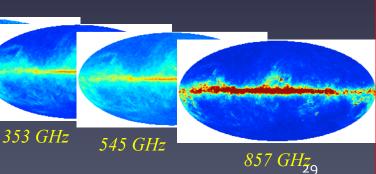


Source Separation: Cosmic Microwave Background



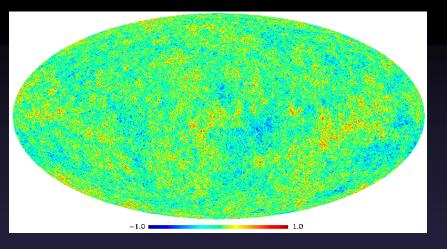




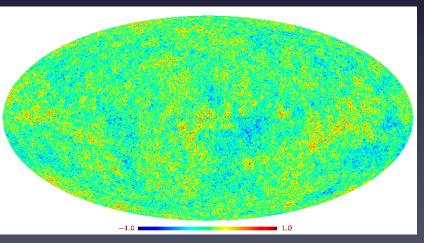


Source Separation: Cosmic Microwave Background

Input CMB map



CMB map estimated by GMCA



Conclusion

INSTRUMENTATION

The development of new instruments more and more accurate improves the quality of the observations

IMAGE PROCESSING

Improves the quality of the image after acquisition by the instrument



IMAGE PROCESSING

Is used to extract the useful information to help in the physical interpretation

