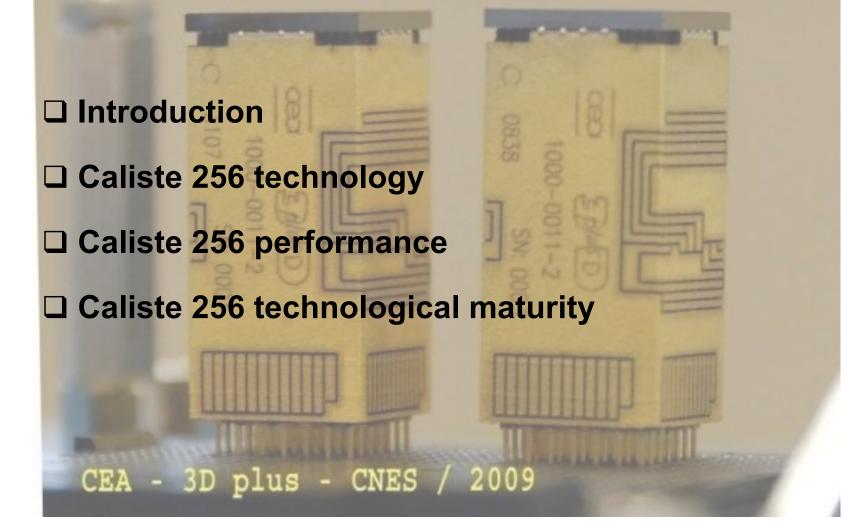


Caliste-256, 580 µm pixel pitch CdTe imaging spectrometer for space science



M.C. Vassal, R. Bocage, F. Soufflet

Outline

œ

Recent developments for CdTe detectors

Activity supported by CEA and CNES since 2003

Goals

- Bounce on Integral/ISGRI return
- Demonstrate entirely new sensors based on CdTe pixel detectors in the hard X-ray domain
- Develop new devices for space applications
 - High reliability and modular concept
- Demonstrate high performance
 - Spectroscopy, imaging, timing

Means

- Microelectronics development in house for analog front-end ASICs
 - Low noise, low power, radiation hard
- Industrial means for device production
 - Hybrid stacking technology
- Development according on space rules
 - > Technological evaluation for high technological readiness level
- Performance evaluation

Needs for future hard X-ray astronomy missions

- Simbol-X, Astro-H, NuStar, NHXM...
- Energy band: 4-80 keV
- ~10 arcsec angular resolution
 - Typ. 1-2 mm HEW PSF
- Large effective area
 - ~10 arcmin field of view
- High spectral resolution
 - Typ. 1.2 keV FWHM @ 60 keV
- Background rejection by anticoincidence
 - Timing resolution < 100 ns rms</p>
 - Integration in the shielding

Detector

- ≻CdTe, 1-2 mm thick
- ➢Fine pitch pixels
- ➤Mosaïc of 1 cm² crystals

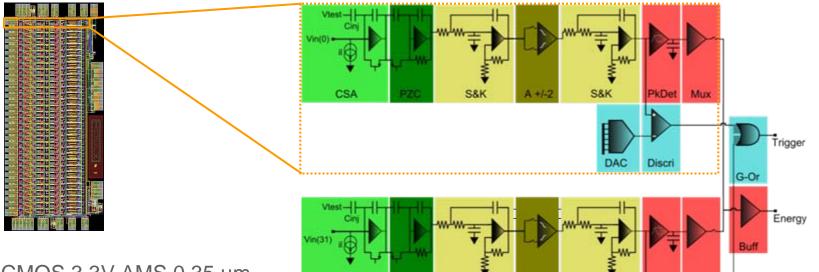
Front-end electronics

≻Low leakage current

ACRORAD

Hybridization

Low noise ASIC

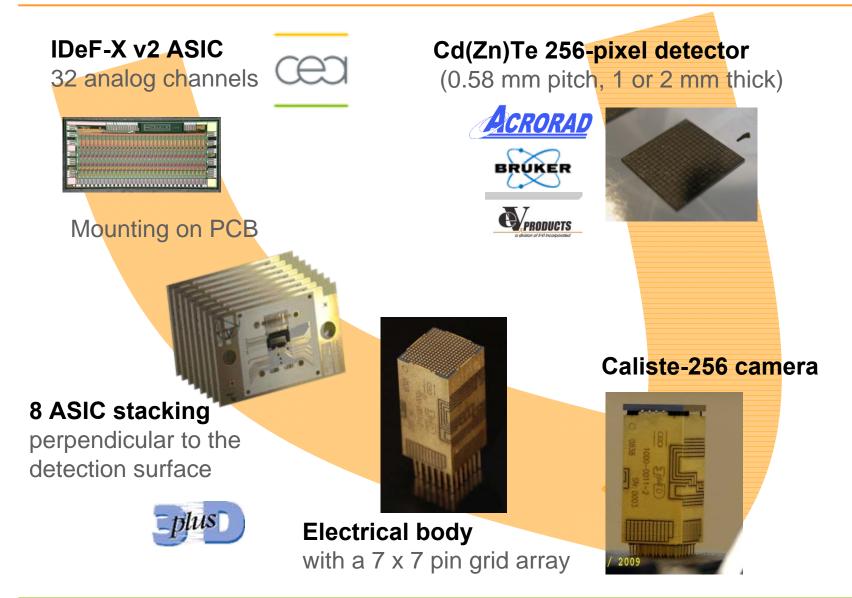

Time-walk correction

- ≻Low input capacitance
- ≻4-side buttable device

IDeF-X v2 front-end ASIC for Caliste-256

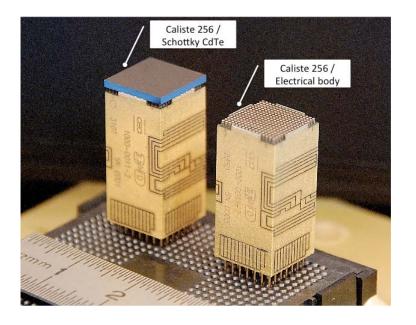
S&F

- CMOS 3.3V AMS 0.35 µm
- 32 analog channels
- 1 output buffer and 1 trigger output
- Slow control interface, 6 configuration registers
- Gain: 200 mV/fC
- Dynamic range: 50 ke-
- Shaper peaking time: 0.9-9 µs
- Individual low-level threshold set by 6-bit DAC
- 3 readout modes: all channels, hit channels or on demand


Mux

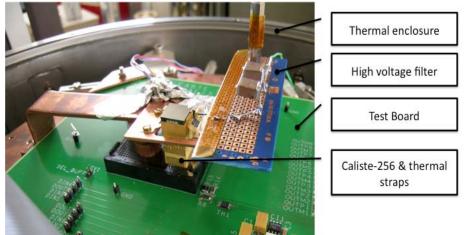
kDet

Discri


DAC

Caliste-256 design and technology

Caliste-256 fabrication and tests

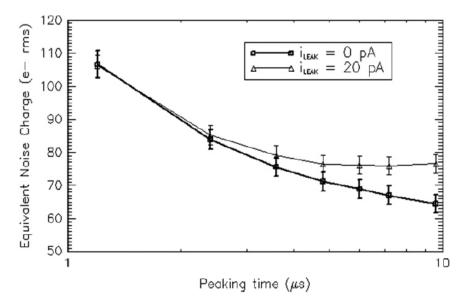


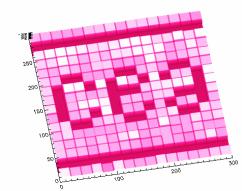
Operation in the lab

- Vacuum chamber + cold finger
- 14-bit ADCs
- 20 MHz sequencing clock
- 1 FPGA for ASIC and ADC control and data frame packaging

Mean features

- 16×16 pixels of 580 µm + guard ring
- Volume: 10 × 10 × 21 mm³; Mass: 4 g
- Power: 816 mW (3.2 mW/channel)
- 220 keV energy range
- Programmable individual low-level threshold (step ~0.28 keV)
- 8 differential outputs

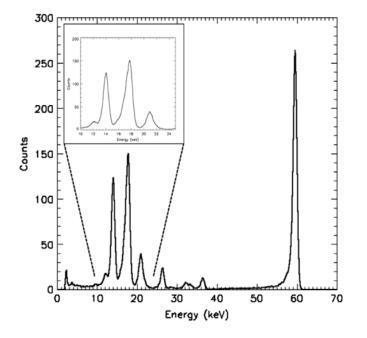




Noise performance

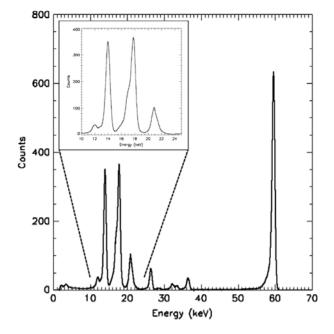
Characterization with test injection signal over the 256 channels

Noise map with test injection pattern


Uniformity

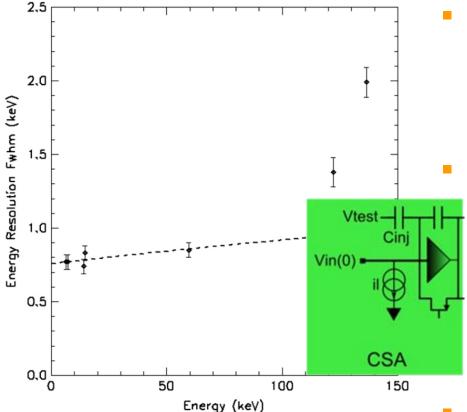
σ₂₅₆ = 5 el. rms (8%)

- Expected energy resolution (70 el. rms)
 - 0.76 keV FWHM @ 14 keV
 - 0.86 keV FWHM @ 60 keV


Spectroscopic characterization with ²⁴¹Am source

2 mm-thick CZT

- 800V, -15°C, 6.0 μs peaking time
- 0.91 keV FWHM @14 keV
- 1.09 keV FWHM @60 keV
 - σ₂₅₆= 0.13 keV fwhm (12%)
- Low threshold ~2 keV
- Extracted current 30 pA/pixel


1 mm-thick Schottky CdTe

- 300V, 0°C, 9.6 µs peaking time
- 0.73 keV FWHM @14 keV
- 0.85 keV FWHM @60 keV
 - σ₂₅₆= 0.09 keV fwhm (11%)
- Low threshold ~1.5 keV
- Extracted current 10 pA/pixel

Energy resolution: analysis

1.38 keV FWHM @122.06 keV

- σ₂₅₆= 0.09 keV fwhm (11%)
- ~1.0 keV expected

Interpretation: CSA architecture

- Output voltage of the CSA opens the feedback reset transistor
 → causes additional noise source
 - \rightarrow causes additional hoise source on the signal itself,
 - \rightarrow called non-stationary noise

Fixed in the new IDeF-X version

 See poster ID62 / session IV (A. Michalowska)

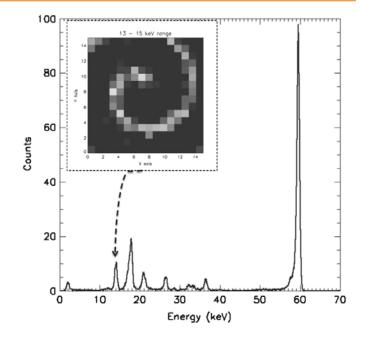
Technological evaluation

- Total ionizing dose: OK up to 1 Mrad
- Latch-up: LET threshold > 65 MeV.cm².mg⁻¹
- Single-event upset: LET threshold > 9 MeV.cm².mg⁻¹ (on-chip detection)
- Life-test: OK up to 2000 h at 125°C
- Sine vibrations: 20 g, 20-2000 Hz, 3 axis \rightarrow passed
- Shocks: 1500 $g \rightarrow$ passed
- Thermal cycling: 50 cycles $-55^{\circ}/55^{\circ}C + 50$ cycles $-55^{\circ}/100^{\circ}C \rightarrow passed$
- THB (temperature, humidity, bias): 240 h at 85°C/ 85% RH \rightarrow passed

Conclusions

Tests performed according to ESA standards.

All tests required for space qualification have been passed.



ASIC level (IDeF-X) Hybrid level (Caliste)

Conclusions

 Caliste 256 performs in hard X-rays high resolution imaging spectroscopy.

 Technology mature to be used as a space-qualified component


- Ways of improvement
 - Power consumption (3 mW/channel) \rightarrow thermal issue
 - Electrical interface (49 pins) \rightarrow integration and PCB routing issue

Next steps

- New Caliste generation: 8 IDeF-X HD ASIC, 0.8 mW/channel, 16 pins
- Modular assembly of Caliste Spectroscopic Imagers (MACSI)

MACSI: 8 cm² CdTe camera, 2048 channels

