NDIP 2011 4-8 July 2011 at Lyon

Development of High-Resolution Compton Cameras Based on Si/CdTe Imaging Detectors

Hirokazu Odaka (ISAS/JAXA)

Y. Ichinohe, S. Takeda, T. Fukuyama, K. Hagino, S. Saito, T. Sato, G. Sato, S. Watanabe, M. Kokubun, T. Takahashi (ISAS/JAXA), M. Yamaguchi (JAEA),

H. Tajima (Nagoya University), T. Tanaka (Stanford University), K. Nakazawa (University of Tokyo), Y. Fukazawa(Hiroshima University)

Compton Camera

Energy band from 100 keV to 10 MeV

Compton scattering is dominant over all other interactions of a photon with detector material.

Promising sub-MeV/MeV gamma-ray imaging spectrometer for

gamma-ray

Compton

scattering

photoelectric

absorption

 $(\overline{E_1, \boldsymbol{x}_1})$

 (E_2, x_2)

scatterer detector

absorber detector

- Astrophysical observation
- Medical imaging
- Nondestructive inspection
- Search for radioactive isotopes

Energy and direction of the incidentphoton are determined by Comptonkinematics. E_i : Energy deposited

x_i : Position of an interaction

$$E = E_1 + E_2, \quad \cos \theta = 1 - m_{\rm e}c^2 \left(\frac{1}{E_2} - \frac{1}{E_1 + E_2}\right)$$

Accurate measurement of energy and position is important to obtain high angular/spatial resolution.

Advantage of Si/CdTe

Semiconductor imaging detectors are the most suitable.

High Energy/Position Resolution

- 1) Si detector as the scatterer [Low-Z: Z=14]
- High probability of Compton scattering
- Small Doppler broadening effect (by target electron momentum)

gamma

CdTe

2) CdTe detector as the absorber [High-Z: Z=48,52]

- Large cross section of photoelectric absorption
- High density (5.85 g/cm³)
- Schottky diode electrode configuration reduced low-energy tail (high bias voltage) Takahashi+ (2002)

Design of Si/CdTe Compton cameras

✓ Combination of Si and CdTe detectors with high resolution

✓ Many-layer stack structure with small pitch

ASTRO-H X-ray Observatory

ASTRO-H is the next X-ray satellite led by JAXA, scheduled for launch in 2014. (Takahashi+ 2010)

ASTRO-H X-ray Observatory

ASTRO-H is the next X-ray satellite led by JAXA, scheduled for launch in 2014. (Takahashi+ 2010)

Results from Prototypes

υπητοπ παιστη

Takeda+ (2009) collaboration with Gunma Univ. & JAEA

1-layer Si + 4-layer CdTe

Multiple point sources

- Grid with a gap of 20 mm
- Distance of 60 mm from the camera top

• 1 mm position accuracy (distance: 60 mm) • FOV > 120°

Compton Imagina

1-layer Si + 4-layer CdTe

collaboration with Gunma Univ. & JAEA

Extended sources

- Liquid ¹³¹I source (364 keV)
- reverse "C" shape
- Distance of 30 mm from the top

- Imaging of diffuse emission is well performed.
- Spatial resolution is better than 3 mm. (distance: 30 mm)

Results from Prototypes High-Precision Polarimetry

Principle: anisotropy of the azimuth angle distribution of Compton scattering

Advantage over conventional Compton polarimeters

- High precision measurement of the azimuth angle
- Restrict the incident direction of photons (Background rejection)

The measured modulation factor agrees with the theoretical value.
 0.83 = 0.926 × 0.90 (modulation factor for 100% polarized beam)
 Polarization angle is determined to a precision of 1°. Tak

Takeda+ (2010)

Strategy for Higher Performance

Two important performance keys:

1) Angular/Spatial Resolution

	Energy	Position
Precise measurement	New ADC-included low- noise readout ASICs VATA 450/460/461	New fine-pitch CdTe double-sided strip detectors
Detailed data reduction	Efficient calibration method using Compton events	Depth sensing & inter-strip events using multi-strip information

2) Detection Efficiency

- Large-area & multi-layer stacking of double-sided strip detectors
- Modular design \rightarrow flexible & scalable configuration

New Camera Module

- ✓ Stack of DSDs with high energy/position resolutions
- ✓ Highly modular design
- The detector configuration is flexible and scalable for specific applications.
 Example: 1 Si + 4 CdTe

assembled by MHI

Common spec.	DC-coupled floating readout with VATA 460/461 Active area: 3.2 x 3.2 cm ² 128 strips in each side with 250-um pitches	
Si-DSD	ΔE: 1.5 keV at 60 keV (FWHM) Thickness: 500 um Ha	mamatsu
CdTe-DSD	ΔE/E: 1% at 500 keV (FWHM) Thickness: 750 um AC	CRORAD

250-um Pitch CdTe-DSD

Key detector of the Si/CdTe system

Watanabe+ (2009), Ishikawa+ (2010)

Shadow image (28-33 keV)

250-um Pitch CdTe-DSD

Key detector of the Si/CdTe system

Watanabe+ (2009), Ishikawa+ (2010)

Am-241 spectrum

Applied bias: 250 V ΔΕ: 1.7-1.9 keV at 60 keV (FWHM) Low threshold: 5 keV

Detector Response

For scientific applications (spectral fitting, image deconvolution,...), correct understanding of the detector response is required.

To handle complex response of the Si/CdTe Compton camera, we have developed a full Monte Carlo simulator. (Odaka+ 2010)

same format as the real experimental data

Response of CdTe

Complex detector response due to incomplete charge collection (small mobility-lifetime product of hole)

- We are now investigating inter-strip events, which can produce charge-shared events and/or low-energy tail structure.
- Polarization of CdTe is also an important issue. We established long-term stability at the ASTRO-H operation temperature, –20°C. (Sato+ 2010)

Calibration

High resolution detectors require accurate calibrations! Calibration using gamma-ray lines is not realistic at high energies for Si detectors because photoelectric absorption hardly occurs.

→ Use two-hit Compton events

This method can be cross-checked by test pulses. VATA 450/460 series has a function to operate calibration test pulses.

Initial Results

Angular resolution is 4-6 degrees, depending on event selection criteria.

¹³⁷Cs ¹³³Ba ²²Na

¹³⁷Cs 662 keV (2.8 MBq)

²²Na 511 keV (0.5 MBq)

¹³³Ba 356 keV (2.3 MBq)

We successfully obtained multi-RI gamma-ray images with the new camera.

Summary

- Prototype camera
 - ✓ High-spatial resolution Compton imaging
 1 mm accuracy, better than 3 mm precision
 - ✓ High-precision polarimetry degree of polarization ~1 %, angle ~1°
- New Si/CdTe module
 - ✓ Flexible and scalable structure
 - ✓ New ADC-included readout ASICs VATA 450/460/461
 - ✓ 250-um-pitch double-sided strip detectors
 - ✓ High energy resolution CdTe-DSD: 1%
 - ✓ We demonstrated good Compton-imaging performance from the initial data analysis.