

### Development of new oligomeric and polymeric materials for bulk heterojunction photovoltaic cells and photodetectors

S.A. Ponomarenko, E.A. Kleymyuk, E.A. Myshkovskaya, Yu.N. Luponosov, A.M. Muzafarov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences (ISPM RAS), Moscow, Russia

P.A. Troshin, E.A. Khakina, V. F. Razumov

Institute of Problems of Chemical Physics of Russian Academy of Sciences (IPCP RAS), Chernogolovka, Russia

Yu.L. Moskvin, S.D. Babenko Institute for Energy Problems of Chemical Physics of Russian Academy of Science (Branch), Chernogolovka, Russia



- Introduction
- Organosilicon derivatives of  $\alpha, \alpha$ '-dialkyloligothiophenes
- Oligothiophenesilanes
- Low band gap copolymers
- Conclusions



Organic thin-film transistors (OTFTs, OFETs) and IC

## Plastic-IC an flexible polymer-foil



Organic light emitting diodes (OLEDs) and displays

**Organic electronics** 



NATURE | VOL 421 | 20 FEBRUARY 2003

Organic photovoltaics (solar cells & photodetectors)





Continuous printing methods for low cost polymerelectronics • by roll to roll printing







NATURE | VOL 428 | 29 APRIL 2004

RUARY 2003 Figure 1. A flexible, organic-based solar cell

The production of plastic chips tomorrow

### **Organic Semiconductors**

Evaporation



Spincoating



#### Functional materials for Organic Electronics and Photonics @ ISPM RAS



#### Oligo- and polyarylsilanes of different molecular structure



#### New materials for polymer BHJ solar cells and photodetectors



#### **Organosilicon** derivatives of $\alpha$ , $\alpha$ '-dialkyloligothiophenes



#### UV- Vis absorption spectra

Thin films absorption spectra





Solar Energy Materials and Solar cells 2010, 94, 2064

#### Preparation of test devices for organic photovoltaic cells





#### **Typical electrical characteristics of photovoltaic cells**





Ponomarenko S.A. at. al., NDIP11, Lion - France, July 07, 2011



NDIP

Energy & Environmental Science 2010, 3, 1941

#### *Tetrakis*(ter-, quater- and quinquethiophene)silanes



# I-V characteristics and IPCE spectra of photovoltaic cells based on oligothiophenesilanes



#### Photodetectors based on Si(4T-Hex)<sub>4</sub> / [70]PCBM BHJ



#### Solar light spectra and absorption spectra of the mostly used materials







|            | Mn   | Mw    | DPI  | λ <sub>max</sub> , nm<br>(solution) | λ <sub>max</sub> , nm<br>(film) | $\Delta E_{opt} eV,$ (solution) | ΔE <sub>opt,</sub> eV<br>(film) |
|------------|------|-------|------|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| <b>P1</b>  | 8400 | 11900 | 1.42 | 495                                 | 478                             | 2.24                            | 2.21                            |
| P2         | 2700 | 4500  | 1.67 | 474                                 | 434                             | 2.25                            | 2.19                            |
| <b>P3</b>  | 7500 | 12500 | 1.67 | 574                                 | 585                             | 1.89                            | 1.69                            |
| <b>P</b> 4 | 6700 | 10000 | 1.49 | 577                                 | 594                             | 1.88                            | 1.59                            |





| 2     |  |
|-------|--|
|       |  |
| NIDID |  |
| NUIP  |  |

4000

4600

**P7** 

**P8** 

5000

6000

1.20

1.30

495

481

510

494

2.11

2.16

1.79

1.88





**P12** 

8300

12300

1.47

539

560

2.02

1.90

#### Low band gap copolymers R `R R1 P7 (R = - Oct)P5 (R = - Oct)P1 (R, $R_1 = - Oct$ ) P3 (R = - Oct)P6(R = -EtHex)P8 (R = - EtHex)R R P4(R = -EtHex)P2 ( $R = Oct, R_1 = -EtHex$ ) $\Delta E_{opt} eV$ , V<sub>oc</sub>, FF, No. I<sub>sc</sub>, η, in film mA/cm<sup>2</sup> мV % % **Px / F1** 2.21 **P1** 1:11.43 522 53 0.80 2.19 1:22.94 32 0.20 **P2** 561 P9 (R = - Oct)P10 ( $\mathbf{R} = -\mathbf{EtHex}$ ) **P3** 1.69 1:227 0.14 1.45 365 1.59 1:23.10 41 0.70 **P4** 565 1.60 1:3 2.50 37 0.50 525 **P5** 1:3 1.62 **P6** 2.10 37 0.41 516 P11 (R = - Oct)1.79 1:3 2.57 0.73 720 39 **P7** P12 ( $\mathbf{R} = -\mathbf{EtHex}$ ) 1.88 1:4**P8** 1.57 33 0.33 631 1.55 1:210.23 500 41 2.09 **P9** 1.60 1:23.70 35 0.65 500 **P10** 3.97 1.92 1:410.50 900 42 **P11** 070 1.90 1:48.1 900 35 2.55

F1 - [60]PCBM

**P12** 



Adv. Funct. Mater. 2010, 20, 4351

#### I-V characteristics and IPCE spectra of low band gap copolymers



**P9**:  $I_{sc} = 10.23 \text{ mA/cm}^2$ ,  $V_{oc} = 0.5V$ , FF = 41%, PCE = 2.1% **P10**:  $I_{sc} = 10.50 \text{ mA/cm}^2$ ,  $V_{oc} = 0.9V$ , FF = 42%, PCE = 4.0%

Ponomarenko S.A. at. al., NDIP11, Lion - France, July 07, 2011

#### Photodetectors based on P11/[60]PCBM blend



Transient response of the organic photodetector to a 10 ns light pulse from a nitrogen laser (337 nm) at different shift voltages. The active area was 0.5 cm<sup>2</sup> and a load resistance of 16  $\Omega$ .

Detection of 1 ms light pulses of blue LED modulated at 250 Hz with the organic photodetector. Black line photodetector response, blue line - light power.

#### Response time ~30-40 ns, decay time ~1 $\mu$ s.

Ponomarenko S.A. at. al., NDIP11, Lion - France, July 07, 2011



### Conclusions

• Solution-processible organic organosilicon semiconducting materials based on  $\alpha$ , $\alpha$ '-dialkyloligothiophenes can be used in organic BHJ solar cells .

• Soluble tetrasubstituted oligothiophenesilanes are interesting materials for organic BHJ solar cells and photodetectors.

• Robust design of low band gap copolymers allows creation polymer BHJ solar cells with improved efficiency and photodetectors.

• The solar cells obtained showed PCE up to 4.0%, while IPCE in the visible range reached 40-50% at maximum.

• The response time of organic photodetectors of 20 - 30 ns was achieved.



#### Acknowledgements

#### ISPM RAS (Russia)

N.M. Surin O.V. Borshchev V.D. Myakushev M.S. Polinskaya

### H.C.Starck Clevios GmbH

(Germany)

- Dr. Stephan Kirchmeyer
- Dr. Timo Meyer-Friedrichsen
- Dr. Andreas Elschner

#### INEOS RAS (Russia)

M.I. Buzin A.P. Pleshkova S.N. Peregudova

# **DWI in RWTH Aachen e.V.** (Germany)

Prof. M. Möller Dr. A. Mourran

**\$\$\$** Russian Foundation for Basic Research, Presidium of Russian Academy of Sciences, Russian Ministry for Science and Education, H.C. Starck GmbH

# Thank you for your attention!



Ponomarenko S.A. at. al., NDIP11, Lion - France, July 07, 2011