Catalina Curceanu Laboratori Nazionali di Frascati, LNF-INFN On behalf of the AMADEUS Collaboration

CONTRACTOR OF THE OFFICE OFFIC

IDIP2011, Lyon - France July 8, 2011

Contents

- •The AMADEUS experiment at the DA Φ NE collider
- •The AMADEUS trigger
- SiPM characterization and lab tests
- First trigger prototype; tests at the DA Φ NE beam
- Second prototype and tests at PSI beam
- Conclusions

The DA ONE collider at LNF-INFN

Flux of produced kaons: about 1000/second

DAFNE e⁻ e⁺ collider

Statistics of the state $\bigcirc \Phi \rightarrow K^- K^+ (49.1\%)$ Monochromatic low-energy K⁻ (~127MeV/c) Less hadronic background due to the beam (compare to hadron beam line : e.g. KEK /JPARC) Suitable for low-energy kaon physics: kaonic atoms **Kaon-nucleons/nuclei interaction** studies

AMADEUS

Antikaon Matter At DA *P*NE: Experiments with Unraveling Spectroscopy

AMADEUS collaboration 116 scientists from 14 Countries and 34 Institutes

lnf.infn.it/esperimenti/siddharta

and

LNF-07/24(IR) Report on Inf.infn.it web-page (Library)

AMADEUS started in 2005 and was presented and discussed in all the LNF Scientific Committees

EU Fundings FP7 – I3HP2: Network WP9 – LEANNIS; WP24 (SiPM JRA); WP28 (GEM JRA)

AMADEUS physics:

Antikaon Matter At DA *P*NE: Experiments with Unraveling Spectroscopy

- <u>Stopped kaons</u> physics - ? Kaonic nuclear clusters (K-pp, K-ppn, K-pnn...) and interaction processes

- <u>Low-energy</u> kaon-nuclei interaction physics

The scientific case of the so-called "deeply bound kaonic nuclear states" is botter than ever both in the theoretical

Either situations: EXISTENCE or NON-EXISTENCE of the deeply bound kaonic nuclear clusters will have strong impact in kaon-nucleon/nuclei physics!!!

And even astrophysics (Strange stars?)

AMADEUS **AMADEUS @ KLOE** EMC **Drift Chamber** Ε ഗ

...

AMADEUS: stopped K-

Trigger system requirements

Cilindrical layer(s) of scintillating fibers surrounding the beam pipe to trigger K+/K- in opposite directions

- Readout to be done by SiPM (Silicon Photo-Multipliers)
- Separation between Kaons and MIPs (time and Edep)
 - Very good timing resolution (~ 200-300 ps)
 - High rates capability

SiPM tests

- Array of single Geiger Mode APD.
- Photon counting depending on the PIXEL size
- Ideal for:
 - ScFi coupling
 - High granularity detector
- Time resolution below 1 ns
- Insensitive to strong magnetic fields
- High gain (>10⁶) and quantum efficiency

Different options available in the market, becoming a standard light readout system (Hamamatsu, Photonique, etc) <u>MPPC Hamamatsu S10362-11-050U</u>

efective area 1mm^2 400 pixel $\lambda = 270-900 \text{ nm}$ working biases ~ 70 V .

SiPM tests: Readout electronics

- The Geiger mode of SiPM makes gain extremely dependent of applied \mathbf{V}_{bias}

-A characterization of this dependency based on the peak distance of intrinsic noise:

- For a good behavior stability in the applied voltage with great precision is needed for every single detector.

We developed new electronic modules providing:

 Variable V_{bias} with a stability for nominal voltages below 10 mV
 2 output / channel: -Amplified (x50-x100) signal -Discriminated signal (variable threshold)

Designed by G. Corradi, D. Tagnani, C. Paglia

ScFi + SiPM tests

Prototype with 5 ScFi read from both sides 10 SiPM + readout card

Instrumented fibers:

-Saint Gobain BCF- 10 single clado -Emission peak 432 nm -Decay time 2,7 ns -1/e 2.2 m -4000 ph./MeV

November, 2008

Tests in laboratory

Setting the threshold for the SiPM used as trigger,

most part of dark count is eliminated.

In this way spectra due only to the source can be observed

Dark count at room temperature

Studying rates with and without the beta source, it turned out that starting from the 4th p.e. Peak, dark count contribute is negligible

This means that no cooling is needed in our case (Kaons are expected to give ~ 50 ph signal)!!!!

Trigger system tests: installation at DA Φ NE

Trigger system tests: installation at DA Φ NE

SIDDHARTA setup

First Kaons detection in $DA\Phi NE$

First Kaons detection in $DA\Phi NE$

First Kaons detection in $DA\Phi NE$

First Kaons detection in DAΦNE

First Kaons detection in DA Φ NE

Kaon Monitor TDC (upper/lower coincidence)

TDC working in Common Start (RF/2)

Single peak resolution~ 100 ps

MIP/K separation ~ 1 ns

SiPM spectraTDC

working in Common Stop (RF/2)

Single peak resolution~ 300 ps

New electronics: Preamplifier board

- A dedicated preamplifier board has been developed for the experimental set-up. Main Characteristics are:
- 8 SiPM channels
 Independent and 10% tunable HV supply for each channel
 LV stability below 0.1%
 Dual output signal per channel
 Transipedance amplifier
 (Gain = 1KOhm)

New electronics: Constant Fraction Discriminators

A constant fraction discriminator has been designed and realized for a large number of channels.

Main characteristic are:

- 64 input channels (500hm terminated) Negative input
- Selectable threshold 10-1000mV
- Differential ECL output
- Minimum input amplitude signal 10mV
- Minimum input pulse width 10ns
- Jitter skew below 10ps
- 5 OR outputs (NIM) with adj, width

New electronics: Timing Characterization

New prototype with 64 channels

A second prototype has been developed for "on beam" tests; it has been designed for efficiency, timing, and optical cross talk studies

New mechanical setup:

2 separate rings for 16 fibers each

Fibers organized in full efficiency layers

- 64 SiPM with own CFD
- Different orientation of rings
 - 8 Amplifier boards

New prototype with 64 channels

Setup - detail

Preliminary results for protons

Sc1 is used as reference

Beam profile

Cross talk (layer 4)

19400 + i -> fired fibers of layer 4 if fiber i of layer 4 is fired

- Trigger is a crucial for AMADEUS and preliminary positive tests were performed at DAFNE with a 5 fibers prototype
- Achieved best single peak resolution around 300 ps
- Bigger ptototype (64 channels) with new electronics was built and testes (PSI) – under analyses
- MCarlo simulations are as well undergoing

AMADEUS is for low-energy QCD:

AMADEUS goes from u and d sector:

AMADEUS goes to u, d and s sector:

Temperature dependence and stabilization

PSI beam test for timing resolution

New electronics: Timing Characterization

