

SOLEX: a tunable monochromatic X-ray source tool for X-ray detectors characterization

Yves Ménesguen, Marie-Christine Lépy

CEA, LIST, Laboratoire National Henri Becquerel, F-91191 Gif-sur-Yvette, France

NDIP 2011, Lyon – France, July 8 2011

Metrological context

The LNE-LNHB is the French metrology institute for ionizing radiation: One of its missions is to provide accurate radionuclide decay data to the users by:

- accurately measuring photon emission intensities,
- evaluating radionuclide decay data,
- publishing recommended data (Nucleide).

X-ray emission intensities of radionuclides ($P_K \omega_K$) [1]

Need of detector calibration independent from radionuclide decay data

Available atomic data and associated uncertainties

Fluorescence yields : $\boldsymbol{\omega}$

Most of the available experimental data are older than 30 years [2] and measured with less accurate setup than nowadays capabilities

- + ω_{κ} uncertainties are larger than 3 % for most elements with Z < 30
- + ω_L uncertainties are larger than 15 % for all elements [3,4]

Table 4. Estimated Percentage Uncertainties for **Fluorescence and Coster-Kronig Yields** f₂₃ ω_{L_3} f₁₂ t₁₃ 5-10 40-102 >25^a 10^a 5^a 10^a 10-20 10-5 25^{a,b} 15^a 40^a 20-30 5-3 25 20 15, 10, 30-20 30-40 100 30-20^b 25-10 40-50 20-10 20 20-15 20 15 20 50-60 2-1 10 10-5 10, 10-5^b 20-15^a 15, 15 15^b 60-70 10-5 20^b 15 70-80 15. 80-90 <1 10 15 15^b 100 10-50 5-10 90-100 <115-20 50-100 10 5 100-110 15 20

[2] W. Bambynek, et al. X-ray fluorescence yields, Auger, and Coster-Kronig transition probabilities. Rev. of Mod. Physics, 44, (716-813), 1972

[3] M. O. Krause. Atomic Radiative and Radiationless Yields for K and L Shells. J. Phys. Chem. Ref. Data, Vol 8, No 2, 1979

[4] E. Schönfeld, H. Janssen. Evaluation of atomic shell data. Nuclear Instruments & Methods in Physics Research A, 369, (527-533), 1996

[5] M. O. Krause. Atomic Radiative and Radiationless Yields for K and L Shells. J. Phys. Chem. Ref. Data, Vol 8, No 2, 1979

Outline

- 1. SOLEX : The monochromatic & tunable X-ray source
 - 1.1 The source setup
 - 1.2 The source technical properties
 - 1.3 Reference detector
- 2. Energy-dispersive X-ray spectrometer (EDS) characterization
 - 2.1 Surface Map
 - 2.2 EDS response function
 - 2.3 EDS efficiency calibration
- 3. Other capabilities of SOLEX
 - 3.1 Total mass attenuation coefficients measurements
 - 3.2 Fluorescence yields

1.1 SOLEX, a tunable monochromatic X-ray source: principles

1.2 SOLEX: a tunable monochromatic X-ray source [7]

Output 1: X-ray Detector (HPGe, Si(Li), SDD...)

Vacuum chamber (10⁻⁷ hPa)

X-ray tube

- •Windowless, water-cooled
- •Several anodes materials : (Cu, Au, Ag Hastelloy...)
- •HV up to 50 kV
- •Controllable intensity up to 100 mA
- Intensity fluctuations <1%

[7] C. Bonnelle, et al. SOLEX : a tunable monochromatic X-ray source in the 1-20 keV energy range for metrology. Nuclear Instruments & Methods In Physics Research A, 516, (594-601), 2004

1.2 SOLEX: characteristics

1.3 Gazeous Proportional Counter as reference detector

- Mounted on the 2nd output
- Two beryllium windows
- Full transmission/absorption characterization
- Dedicated to full-energy peak efficiency calibration

Outline

- 1. SOLEX : The monochromatic & tunable X-ray source
 - 1.1 The source setup
 - 1.2 The source technical properties
 - 1.3 Reference detector
- 2. Energy-dispersive X-ray spectrometer (EDS) characterization
 - 2.1 Surface Map
 - 2.2 EDS response function
 - 2.3 EDS efficiency calibration
- 3. Other capabilities of SOLEX
 - 3.1 Total mass attenuation coefficients measurements
 - 3.2 Fluorescence yields

2.1 EDS characterization: surface map

- 2D scan (40 x 40 mm)
- Beam size about 0,5 x 0,5 mm
- Spectrum acquisition and automated treatment

2.2 EDS characterization: response function

Si(Li) EDS Monochromatic photons Energy = 3 keV

- ____ Total Spectrum
- ____ Full-energy peak (total absorption)
- ____ Escape peak
- Photoelectrons escape
- Auger electrons escape
- ---- Interaction of Auger electrons of the electrode
- Interaction of photoelectrons of the electrode
 - L- fluorescence peak of the electrode
 - K- fluorescence peak of aluminum

2.3 EDS full-energy peak efficiency calibration

X-ray counting system based on YAG scintillator and a PM [8]

[8] J.M. André, K. Le Guen, P. Jonnard, DUVEX a versatile EUV-X detector, SPIE Optical Systems Design, Marseille 9/2011, 8167B-81

2.3 EDS full-energy peak efficiency calibration [9]

3. Other capabilities of SOLEX

[10] M.J. Berger, J.H. Hubbell, J. Seltzer, S.M. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, XCOM: Photon Cross Sections Database. Available online: http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html

[11] B.L. Henke, E.M. Gullikson, and J.C. Davis. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92, Atomic Data and Nuclear Data Tables Vol. 54 (no.2), 181-342 (July 1993). Available online: http://henke.lbl.gov/optical_constants/

3.1 Total mass attenuation coefficients (example of Cu)

3.2 Fluorescence yields

[12] Y.Ménesguen et al. Mass attenuation coefficients in the range 3.8<E<11 keV, K fluorescence yield and K_{θ}/K_{α} relative X-ray emission rate for Ti, V, Fe, Co, Ni, Cu and Zn measured with a tunable monochromatic X-ray source. Nuclear Instruments & Methods In Physics Research B, 2010

Conclusion

- SOLEX
 - Laboratory tool : permanent access
 - Flexible
 - Easier than synchrotron, however with less flux
- Tool for accurate characterization of detectors in the 1-20 keV energy range
 - Detector response homogeneity (mapping)
 - Detector response function
 - Efficiency calibration (independent of radionuclides decay data)
- Tool for accurate characterization of materials
 - Improved facility (monochromatic photons, EDS, tuneability)
 - Transmission (filters, sample)
 - Attenuation coefficients
 - Fluorescence yields
 - Etc.