

Multi-wavelength Study of PPDs using an OPO Tunable Pulse Laser Microscope System

Koji YOSHIMURA and Isamu NAKAMURA for KEK Detector R&D Group

Outline

Introduction OPO Laser Microscope

Commissioning

Power and wavelength measurement

PPD test

Photon detection efficiency

Summary & Future works

Introduction

Motivation

Why is multi-wavelength light usuful for study PPDs?

Variety of applications which cover different range of wave length Understanding of sensor structure and mechanism Orme's Study (PD'09)

Geiger Efficiency

LED or DC light with Monochrometer?

승규가 가지 않는 것은 것은 것을	
LED (Laser)	DC Lamp with monochrometer
Discrete samples	Continuous
Pulse	DC
No Cross talk/After pulse	Incl. Cross talk/After pulse
Need reference	Si Photo diode as a reference

G. Bonanno et al. NIM A610

Microscope system

Study pixel by pixel

Geometrical fill factor

Uniformity

Edge effect

Spot size ~ µm

Multi-wavelength laser & microscope could be used for 3D-probe for solid state photon sensor

1600-pixel

YAG Laser, $\lambda = 532$ nm Pulse width ~ 2 nsec Pulse rate ~ 8 kHz Spot size ~ 1 μ m

OPO Laser Microscope

OPO (Optical Parameteric Oscillator)

OPO (Optical Parameteric Oscillator)

\mathcal{D}	pol	ette™((HE)	355	\mathbf{II} +	U١	Ι
---------------	-----	--------	------	-----	-----------------	----	---

	Pump Laser Specifications	
Pump Laser	Nd:YAG	Flashlamp pumped
Pump Wavelength	355 nm	
Pulse Repetition Rate (PRR)	20 Hz	Lower rep rate can be selected
Pulse length	5 ns	Nominal
Beam Diameter	3 (4) mm	Nominal
External Trigger	Lamp and Q-Switch	Flashlamp has to operate at designed PRR
	OPO Parameters	
Wavelength Tuning Range	210 - 355 nm & 410 - 2200 nm	Extended UV tuning range
Peak OPO Energy	3.5 (8.5) mJ	See tuning graph
Peak UV Energy	0.3 (1) mJ	
Spectral Linewidth	~ 4 - 7 cm ⁻¹	
Room Diversence	Horizontal < 10 mrad	EDM/UNA
Beam Divergence	Vertical ~ 2 mrad	EWHM
	Signal: Horizontal	
Polarization	Idler: Vertical	Linear polarization
	UV: Vertical	
Computer Control	All the laser and OPO functions	ON, OFF, Power, Rep-Rate, Tuning, Scan

OPO Laser Micro scope system

OPO Tunable Pulse Laser Microscope System

10

DN

OPO Laser Micro scope system

OPO Tunable Pulse Laser Microscope System

10

DN

Commissioning

Measurement of Power

Measurement of Power

Linewidth and Spot size

Spectral linewidth is very sharp. No contaminations.

Spot size is as small as 1µm. (100 x opjective lense)

MPPC Test

14

Test Measurement of PDE

MPPC: HPK S10362-11-100c PMT: HPK H4535MOD

100pix 1mm² φ15 photo Cathod

Reference PMT

Spot size control

We defocus the image to get large spot size.

Spot size control

We defocus the image to get large spot size.

Spot size control

We defocus the image to get large spot size.

Spot size control

We defocus the image to get large spot size.

Spot size control

We defocus the image to get large spot size.

PDE measurement

Npe was extimated by using pedestal information.

(with some corrections of dark noise)

to avoid crosstalk and after pulse effect.

 $P(n) = \mu^{n} e^{-\mu}/n!$ $P(0) = N_{ped}/N_{all}$ $= e^{-\mu}$ $\mu = -\ln(N_{ped}/N_{all})$

PDE measurement

Npe was extimated by using pedestal information.

(with some corrections of dark noise)

to avoid crosstalk and after pulse effect.

8, 2011, Lyon

We found the following problems during commisioning:

- Low repetition rate 20 Hz at maximum Long measurement time
- Stability

Power is not absolutely stable.

EM Noise

Servo motor generate severe noise.

Temperature control Automation

Power monitor

Improve stage, shielding

Summary & Future works

Multi-wavelength measurement Useful to probe in depth direction **OPO** laser micro scope system : **Pulsed laser with 5 ns width** 410 nm ~ 2100 nm continuously tunable ~ µm spot size Low repetition rate 20 Hz **Stability** Several issues to be solved: **Stability** → Realtime power monitor Automation → Developing Kit **Stage** → Larger Stage to accomodate larger sensors **Study of various PPDs**

Acknowledgement

Special Thanks to Ms. Ikemoto (KEK) Mrs. Mine and II (Japan Laser) Mr. Oki (OK-Lab)