Exploring the primordial Universe with the Cosmic Microwave Background

J.-Ch. Hamilton - APC, Paris

Exploring the primordial Universe with the Cosmic Microwave Background

J.-Ch. Hamilton - NDIP - Lyon - July 4th 2011

Big Bang

- Initial singularity ? Superstrings ?
- Inflation ?
 - The Universe expands exponentially
- Primordial nucleosynthesis
 - First nuclei formed H, He, Li, Be
 - Universe is still ionized
 - Matter and radiation at thermal equilibrium
 - T<I3.6 eV : electrons start to be captured by nuclei

Photons decouple from matter CMB is emitted Blackbody :T=3000 K @ z=1000

Today : Blackbody T=2.7 K

Big Bang

- Initial singularity ? Superstrings ?
- Inflation ?
 - The Universe expands exponentially
- Primordial nucleosynthesis
 - First nuclei formed H, He, Li, Be
 - Universe is still ionized
 - Matter and radiation at thermal equilibrium
 - T<I3.6 eV : electrons start to be captured by nuclei

Photons decouple from matter CMB is emitted Blackbody :T=3000 K @ z=1000

Big Bang

- Initial singularity ? Superstrings ?
- Inflation ?
 - The Universe expands exponentially
- Primordial nucleosynthesis
 - First nuclei formed H, He, Li, Be
 - Universe is still ionized
 - Matter and radiation at thermal equilibrium
 - T<I3.6 eV : electrons start to be captured by nuclei

Photons decouple from matter CMB is emitted Blackbody :T=3000 K @ z=1000

Today : Blackbody T=2.7 K

Exploring the primordial Universe with the Cosmic Microwave Background

Dark Energy

Accelerated Expansion

Big Bang

- Initial singularity ? Superstrings ?
- Inflation ?
 - The Universe expands exponentially
- Primordial nucleosynthesis
 - First nuclei formed H, He, Li, Be
 - Universe is still ionized
 - Matter and radiation at thermal equilibrium
 - T<I3.6 eV : electrons start to be captured by nuclei

Photons decouple from matter CMB is emitted Blackbody :T=3000 K @ z=1000

Today : Blackbody T=2.7 K

Big Bang

- Initial singularity ? Superstrings ?
- Inflation ?
 - The Universe expands exponentially
- Primordial nucleosynthesis
 - First nuclei formed H, He, Li, Be
 - Universe is still ionized
 - Matter and radiation at thermal equilibrium
 - T<I3.6 eV : electrons start to be captured by nuclei

Photons decouple from matter CMB is emitted Blackbody :T=3000 K @ z=1000

Today : Blackbody T=2.7 K

Big Bang

- Initial singularity ? Superstrings ?
- Inflation ?
 - The Universe expands exponentially
- Primordial nucleosynthesis
 - First nuclei formed H, He, Li, Be
 - Universe is still ionized
 - Matter and radiation at thermal equilibrium
 - T<I3.6 eV : electrons start to be captured by nuclei

(COBE/DMR homepage)

WMAP

+/- 30 μ k

Photons decouple from matter CMB is emitted Blackbody :T=3000 K @ z=1000

Today : Blackbody T=2.7 K

Launched may 14th 2009 Duration ~ 28 months

Exploring the primordial Universe with the Cosmic Microwave Background

warman was companion of 5 percent

Area and the second sec

ANCH

COESTER

Range and a state of the state

J.-Ch. Hamilton - NDIP - Lyon - July 4th 2011

The Planck one-year all-sky survey

(c) ESA, HFI and LFI consortia, July 2010

Exploring the primordial Universe with the Cosmic Microwave Background

J.-Ch. Hamilton - NDIP - Lyon - July 4th 2011

Gaussian perturbations : the power spectrum encodes all the information

Spherical harmonics expansion $\frac{\Delta T}{T}(\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta,\phi)$

• Angular power spectrum $C_{\ell} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |a_{\ell m}|^{2}$ • ℓ is the inverse of an angle $\ell = 200 \leftrightarrow \theta = 1$ deg.

égalité

matière-

ravonnement

découplage rayonnement-

matière

Fourier modes (structures of given size)

- The primordial Universe is composed of matter-radiation coupled fluid dominated by radiation
 - Matter does not collapse.
- At matter-radiation equality, matter starts collapsing
- Acoustic waves due to radiation pressure start to propagate at the speed of sound. Oscillations are coherent w.r.t. scale
- Oscillations are frozen at matterrdiation decoupling
- ★ Ist peak: sound horizon at decoupling

- The primordial Universe is composed of matter-radiation coupled fluid dominated by radiation
 - Matter does not collapse.
- At matter-radiation equality, matter starts collapsing
- Acoustic waves due to radiation pressure start to propagate at the speed of sound. Oscillations are coherent w.r.t. scale
- Oscillations are frozen at matterrdiation decoupling
- ★ Ist peak: sound horizon at decoupling

Exploring the primordial Universe with the Cosmic Microwave Background

égalité Fourier modes (structures of given size) matièreravonnement découplage rayonnementmatière

- The primordial Universe is composed of matter-radiation coupled fluid dominated by radiation
 - Matter does not collapse.
- At matter-radiation equality, matter starts collapsing
- Acoustic waves due to radiation pressure start to propagate at the speed of sound. Oscillations are coherent w.r.t. scale
- Oscillations are frozen at matterrdiation decoupling
- ★ Ist peak: sound horizon at decoupling

- The primordial Universe is composed of matter-radiation coupled fluid dominated by radiation
 - Matter does not collapse.
- At matter-radiation equality, matter starts collapsing
- Acoustic waves due to radiation pressure start to propagate at the speed of sound. Oscillations are coherent w.r.t. scale
- Oscillations are frozen at matterrdiation decoupling
- ★ Ist peak: sound horizon at decoupling

- The primordial Universe is composed of matter-radiation coupled fluid dominated by radiation
 - Matter does not collapse.
- At matter-radiation equality, matter starts collapsing
- Acoustic waves due to radiation pressure start to propagate at the speed of sound. Oscillations are coherent w.r.t. scale
- Oscillations are frozen at matterrdiation decoupling
- ★ Ist peak: sound horizon at decoupling

- The primordial Universe is composed of matter-radiation coupled fluid dominated by radiation
 - Matter does not collapse.
- At matter-radiation equality, matter starts collapsing
- Acoustic waves due to radiation pressure start to propagate at the speed of sound. Oscillations are coherent w.r.t. scale
- Oscillations are frozen at matterrdiation decoupling
- ★ Ist peak: sound horizon at decoupling

- The primordial Universe is composed of matter-radiation coupled fluid dominated by radiation
 - → Matter does not collapse
- At matter-radiation equality, matter starts collapsing
- Acoustic waves due to radiation pressure start to propagate at the speed of sound. Oscillations are coherent w.r.t. scale
- Oscillations are frozen at matterrdiation decoupling
- ★ Ist peak: sound horizon at decoupling

Adapted from Lineweaver (1998)

Exploring the primordial Universe with the Cosmic Microwave Background

J.-Ch. Hamilton - NDIP - Lyon - July 4th 2011

Influence of the geometry of the Universe

Tremendous progress over the last decade

9999

2011

Huge success : thousands of independant points fitted with less than 10 parameters and a χ^2 /ndf about 1

Theoretical curve predicted in 1987 [Bond & Efstathiou] without any data ...

CMB Polarization (~10%)

(scalar)

Stokes Parameters $I(\vec{n}) = \left\langle \left| E_{\parallel}(\vec{n}) \right|^2 \right\rangle + \left\langle \left| E_{\perp}(\vec{n}) \right|^2 \right\rangle$ $Q(\vec{n}) = \left\langle \left| E_{\parallel}(\vec{n}) \right|^2 \right\rangle - \left\langle \left| E_{\perp}(\vec{n}) \right|^2 \right\rangle$ (spin 2) $U(\vec{n}) = \langle E_{\parallel}(\vec{n})E_{\perp}^{\star}(\vec{n})\rangle + \langle E_{\perp}(\vec{n})E_{\parallel}^{\star}(\vec{n})\rangle$ (spin 2)

 $V(\vec{n}) = i\left(\left\langle E_{\parallel}(\vec{n})E_{\perp}^{\star}(\vec{n})\right\rangle - \left\langle E_{\perp}(\vec{n})E_{\parallel}^{\star}(\vec{n})\right\rangle\right)$ (spin 2)

spin +/- 2 Spherical harmonics expansion $Q(\vec{n}) + iU(\vec{n}) = \sum a_{2,\ell m} {}_{2}\overline{Y_{\ell m}(\vec{n})}$ ℓm

$$Q(\vec{n}) - iU(\vec{n}) = \sum_{\ell m} a_{-2,\ell m} - 2Y_{\ell m}(\vec{n})$$

Exploring the primordial Universe with the Cosmic Microwave Background

J.-Ch. Hamilton - NDIP - Lyon - July 4th 2011

Recent CMB measurements

- Pol. detection 2001
 - ★ DASI et CBI (interferometers)
 - Later measurements:
 - ★ WMAP, QUAD, BICEP
 - Perfect agreement with temperature measurements
 - Correspondance between TT peaks and EE troughs
 - Typical of adiabatic primordial fluctuations (generated by inflation for instance ...)

[QUAD Collaboration: Arxiv:0906.1003]

Recent CMB measurements

Pol. detection 2001

★ DASI et CBI (interferometers)

Later measurements:

- ★ WMAP, QUAD, BICEP ...
- Perfect agreement with temperature measurements

Correspondance between TT peaks and EE troughs

Typical of adiabatic primordial fluctuations (generated by inflation for instance ...)

What we know today

Standard cosmological model : ΛCDM

- The Universe is expanding
 - Hubble constant ~ 70 km.s⁻¹.Mpc⁻¹
- The Universe is ~ flat : $\Omega_{tot} \approx I$
 - CMB + Hubble constant
- ★ It contains ~ 22 % of Dark Matter
 - Known amount, unknown nature (SuSy ?)
 - Galaxies rotation curves, Clusters X, weak-lensing,
 Structure formation, CMB
- ★ It contains ~ 74% of Dark Energy
 - Known quantity, unknown nature
 - SNIa, CMB+H, direct measurements of Ω_{m}

Big Question: origin of primordial fluctuations ?

What we know today

2.0

Standard cosmological model : ΛCDM

- The Universe is expanding
 - Hubble constant ~ 70 km.s⁻¹.Mpc⁻¹
- The Universe is ~ flat : $\Omega_{tot} \approx I$
 - CMB + Hubble constant
- ★ It contains ~ 22 % of Dark Matter
 - Known amount, unknown nature (SuSy ?)
 - Galaxies rotation curves, Clusters X, weak-lensing,
 Structure formation, CMB
- ★ It contains ~ 74% of Dark Energy
 - Known quantity, unknown nature
 - SNIa, CMB+H, direct measurements of Ω_{m}

Big Question: origin of primordial fluctuations ?

What we know today

Standard cosmological model : ΛCDM

- The Universe is expanding
 - Hubble constant ~ 70 km.s⁻¹.Mpc⁻¹
- The Universe is ~ flat : $\Omega_{tot} \approx I$
 - CMB + Hubble constant
- ★ It contains ~ 22 % of Dark Matter
 - Known amount, unknown nature (SuSy ?)
 - Galaxies rotation curves, Clusters X, weak-lensing,
 Structure formation, CMB
- ★ It contains ~ 74% of Dark Energy
 - Known quantity, unknown nature
 - SNIa, CMB+H, direct measurements of Ω_{m}

Big Question: origin of primordial fluctuations ?

Exploring the primordial Universe with the Cosmic Microwave Background

WMAP 7y

Planck expected results

[Planck Bluebook]

Improvements of ~ factor 3 on cosmological parameters

Exploring the primordial Universe with the Cosmic Microwave Background

J.-Ch. Hamilton - NDIP - Lyon - July 4th 2011

What we will know after Planck

(Planck Bluebook)

What we will know after Planck

(Planck Bluebook)

Exploring the primordial Universe with the Cosmic Microwave Background

J.-Ch. Hamilton - NDIP - Lyon - July 4th 2011

Inflation

- Phase of accelerated expansion in the Early Universe
- Initially invented to solve some issues in Big-Bang theory
 - ★ Horizon
 - ★ Flatness
 - ★ Monopoles

Predicts the shape of the primordial density perturbations

- \star Seeds for Structure formation
- ★ Gaussianity
- \star Generation of both scalar and tensor perturbations
- \star Nearly scale invariant power spectrum (spectral index slightly lower than 1)
- All the models that are fitted to observations (CMB or Large Scale Structure) implicitely assume inflation
 - ★ One would feel more confortable with this detail checked ...

- The Universe appears very homogeneous on the large scale
- This is the sign of some «thermalisation process» in the early Universe
- BUT at decoupling the horizon was about I degree
- How did causally disconnected regions manage to get thermalized ?
- Solution : Inflation

Temperature map of the CMB

Temperature fluctuations ~1/100.000

Size of a homogeneous region 1

- The Universe appears very homogeneous on the large scale
- This is the sign of some «thermalisation process» in the early Universe
- BUT at decoupling the horizon was about I degree
- How did causally disconnected regions manage to get thermalized ?
- Solution : Inflation

Temperature map of the CMB

- The Universe appears very homogeneous on the large scale
- This is the sign of some «thermalisation process» in the early Universe
- BUT at decoupling the horizon was about I degree
- How did causally disconnected regions manage to get thermalized ?
- Solution : Inflation

- The Universe appears very homogeneous on the large scale
- This is the sign of some «thermalisation process» in the early Universe
- BUT at decoupling the horizon was about I degree
- How did causally disconnected regions manage to get thermalized ?
- Solution : Inflation

Thermalization

Flatness problem

Ω_{tot} =I is «unstable»

- any tiny excursion from exact flatness at t=0 would now be huge
- we do measure Ω_{tot}=1 with 1% accuracy !
 - \Rightarrow at t=10⁻⁴³ sec : $|\Omega_{tot}$ -1|<10⁻⁶⁰
- A «flattening» process would explain wy we observe a flat Universe, whatever its flatness at the beginning

Solution : Inflation

Flatness problem

Ω_{tot} =I is «unstable»

- any tiny excursion from exact flatness at t=0 would now be huge
- we do measure Ω_{tot}=1 with 1% accuracy !
 - \Rightarrow at t=10⁻⁴³ sec : $|\Omega_{tot}-1| < 10^{-60}$
- A «flattening» process would explain wy we observe a flat Universe, whatever its flatness at the beginning

A. Guth

Solution : Inflation

Where do the structures come from

- We observe many dense structures around us (galaxies, clusters, filaments)
 - The «simple» Big-Bang does not explain that ... it is completelty smooth
- If you assume the correct seeds (~scale invariant power spectrum) the simulation can reproduce the observations

- ad-hoc initial conditions
- a generic process that produces this kind of perturbations : INFLATION !

Exploring the primordial Universe with the Cosmic Microwave Background

N-Body simulation (V. Springel - MPIA)

Where do the structures come from

- We observe many dense structures around us (galaxies, clusters, filaments)
 - The «simple» Big-Bang does not explain that ... it is completelty smooth
- If you assume the correct seeds (~scale invariant power spectrum) the simulation can reproduce the observations

Two alternatives :

- ad-hoc initial conditions
- a generic process that produces this kind of perturbations : INFLATION !

Exploring the primordial Universe with the Cosmic Microwave Background

z = 20.0 N-Body simulation (V. Springel - MPIA)

J.-Ch. Hamilton - NDIP - Lyon - July 4th 2011

50 Mpc/h

The inflation phase

Slow-Roll : small slope and small curvature

- A scalar field (the inflaton) dominates the Universe
- It has a «slow-roll» shaped potential \Rightarrow accelerated expansion \Leftrightarrow inflation

- Inflation stops when the field reaches is minimum potential
- ⇒ Reheating : the inflaton decays into particles
- The Universe then follows it usual evolution

The inflation phase

Slow-Roll : small slope and small curvature

- A scalar field (the inflaton) dominates the Universe
- It has a «slow-roll» shaped potential \Rightarrow accelerated expansion \Leftrightarrow inflation

- Inflation stops when the field reaches is minimum potential
- ⇒ Reheating : the inflaton decays into particles
- The Universe then follows it usual evolution

Accelerated expansion

The inlfaton decays into particles

The inflation phase

Slow-Roll : small slope and small curvature

- A scalar field (the inflaton) dominates the Universe
- It has a «slow-roll» shaped potential \Rightarrow accelerated expansion \Leftrightarrow inflation

- Inflation stops when the field reaches is minimum potential
- ⇒ Reheating : the inflaton decays into particles
- The Universe then follows it usual evolution

The quantum fluctuations of the potential (and of the metric) are enlarged by inflation and produce macroscopic perturbations whose power spectrum can be calculated

- \Rightarrow seeds for structure formation
- Adiabatic perturbations (from reheating)
- Scalar and Tensor modes
- Almost scale invariant power spectrum (invariant if inflation was eternal)
- Almost gaussian perturbations

It leaves a number of open questions

Does it make sens to add one item to the long list of unobserved scalar fields ?

Why should we start here ? Inflation What is the exact form of the potential? Why is the potential so flat here ?

The CMB (Temperature and Polarization) contains answers to these fundamental questions but for now, all inflation models (and there are many !) are compatible with the data.

Scalar and tensor modes - E & B polarization

Scalar perturbations: $P_s(k) = A_s\left(\frac{k}{k_0}\right)$

- Density fluctuations
 - Temperature
 - E polarization
 - No B polarization

Tensor perturbations:

from inflation!
$$P_r(k) = A_t$$

- Specific prediction from inflation!
 - = Primordial gravitational waves
 - Temperature
 - E polarization
 - B Polarization

\Rightarrow detecting B-modes is :

- Direct detection of tensor modes
- «smoking gun» for inflation
- Measurement of its energy scale

$$\sigma_{tens}^{T} \leq 30 \mu \mathrm{K}$$

$$\sigma_{tens}^{E} \leq 1 \mu \mathrm{K}$$

$$\sigma_{tens}^{B} \leq 0.3 \mu \mathrm{K}$$

 $\sigma_{scal}^T \simeq 100 \mu \mathrm{K}$

 $\sigma^E_{scal} \simeq 4\mu \mathrm{K}$

$$= \frac{P_t(k_0)}{P_s(k_0)}$$

~ ratio between E and B modes

Exploring the primordial Universe with the Cosmic Microwave Background

 $V^{1/4} = 1.06 \times 10^{16} \text{GeV} \left(\frac{r_{\text{CMB}}}{0.01}\right)$

 n_t

 $\overline{k_0}$

Only B modes allow to «directly observe» tensor modes

Only B modes allow to «directly observe» tensor modes

Only alternative approach

Direct detection of gravitational waves

Virgo/Ligo

LISA (~2018)

Detectors more adapted to violent events, not primordial background

PGW Direct detection perspectives ...

Cosmic Microwave Background

PGW Direct detection perspectives ...

Exploring the primordial Universe with the Cosmic Microwave Background

PGW Direct detection perspectives ...

Exploring the primordial Universe with the Cosmic Microwave Background

Measuring inflation with CMB B-modes

Four important quantities :

- ★ A_s : known
- ★ n_s : known

- ★ A_t or r: unknown, requires B-modes **detection**
- ★ n_t :unknown, requires B-modes measurement
- Energy scale: $V^{1/4} = 1.06 \times 10^{16} \text{GeV} \left(\frac{r_{\text{CMB}}}{0.01}\right)^{1/4}$
 - Generic prediction of inflation : $r = -8n_t$

coherence test of inflation

- Direct inflaton potential reconstruction (Taylor expansion): $V(\phi) \simeq V|_{\phi_{\text{CMB}}} + V'|_{\phi_{\text{CMB}}} (\phi - \phi_{\text{CMB}}) + \frac{1}{2} V''|_{\phi_{\text{CMB}}} (\phi - \phi_{\text{CMB}})^2 + \frac{1}{3!} V'|_{\phi_{\text{CMB}}} (\phi - \phi_{\text{CMB}})^3$
 - \star A_s related to V'
 - \star n_s related to V"
 - \star running de n_s related to V"
 - \star A_t related to V

Exploring the primordial Universe with the Cosmic Microwave Background

inflaton potential shape recovery !

ex: ns, r and (some) inflationary models

CMBpol Mission Concept Study - Inflation WG report (arXiv:0811-3119)

Primordial fluctuations: where are we standing ? Inflation predictions

 $P(k) \propto k^{n_s - 1}$

Flatness, Homogeneity

Nature of perturbations:

- \star TT peaks at the same location as EE troughs
- Adiabatic perturbations
- Spectral index
 - ★ SPT+WMAP [arxiv:1105.3182]
 - $n_s = 0.9663 \pm 0.0112$
 - Almost scale invariant spectrum

Gaussianity

No convincing evidence for non-gaussianity (despite impressive efforts)

• Tensor perturbations of the metric

No B-mode detection (yet ...)

Primordial fluctuations: where are we standing ? Inflation predictions

 $P(k) \propto k^{n_s - 1}$

Flatness, Homogeneity

Nature of perturbations:

- \star TT peaks at the same location as EE troughs
- Adiabatic perturbations
- Spectral index
 - ★ SPT+WMAP [arxiv:1105.3182]
 - $n_s = 0.9663 \pm 0.0112$ Almost scale invariant spectrum

Gaussianity

No convincing evidence for non-gaussianity (despite impressive efforts)

• Tensor perturbations of the metric

No B-mode detection (yet ...)

Expected difficulties in the Holy Grail Quest

Sensitivity :

- \star B polarization is at best 10 times weaker than E
- ★ Amplitude could be very small ...
- ★ I year of Planck is ~ S/N=1 for T/S=0.01
- A dedicated space mission might not be for tomorrow.

<u>Foregrounds :</u>

- ★ Need to remove them accurately (can't just mask)
 - Multiwavelength detectors
- ★ Observe an ultra-clean region
 - can't be too small as primordial B modes are mainly on large scales

<u>Systematic effects :</u>

- Instrument induces leakage of T into E and B (and T>>E>>B)
 - Cross-polarization and ground pickup are major issues
- Atmospheric polarization ...
 - Need for accurate polarization modulation

Imagers with bolometers:

- \star No doubt they are nice detectors for CMB:
 - wide band
 - low noise (background limited)
- ★ Especially true for a satellite (small background)

Interferometers:

\star Long history in CMB

- CMB anisotropies in the late 90s (CAT: Ist detection of subdegrees anisotropies, VSA)
- CMB polarization Ist detection (DASI, CBI)

★ Technology used so far

- Antennas + HEMTs : higher noise
- Correlators : hard to scale to large #channels
- ★ Clean systematics:
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)

Can these two nice devices be combined ?

Bolometric Interfer

Exploring the primordial Universe with the Cosmic Microwave Background

Imaging and Interferometry

A-COMA WMAP CBI ACDAR

Imager

Imagers with bolometers:

- \star No doubt they are nice detectors for CMB:
 - wide band
 - low noise (background limited)
- Especially true for a satellite (small background)

Interferometers:

\star Long history in CMB

- CMB anisotropies in the late 90s (CAT: Ist detection of subdegrees anisotropies, VSA)
- CMB polarization 1st detection (DASI, CBI)

★ Technology used so far

- Antennas + HEMTs : higher noise
- Correlators : hard to scale to large #channels
- ★ Clean systematics:
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)

Can these two nice devices be combined ?

Bolometric Interfer

Exploring the primordial Universe with the Cosmic Microwave Background

NDIP

A-COMA WMAP CBI ACDAR Absorber

Thermometer

(resistor)

Imagers with bolometers:

- \star No doubt they are nice detectors for CMB:
 - wide band
 - low noise (background limited)
- Especially true for a satellite (small background)

Interferometers:

\star Long history in CMB

- CMB anisotropies in the late 90s (CAT: Ist detection of subdegrees anisotropies, VSA)
- CMB polarization Ist detection (DASI, CBI)

★ Technology used so far

- Antennas + HEMTs : higher noise
- Correlators : hard to scale to large #channels
- ★ Clean systematics:
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)

Can these two nice devices be combined ?

Bolometric Interfer

Exploring the primordial Universe with the Cosmic Microwave Background

A-COMA WMAP CBI ACDAR Absorber Incoming

Thermometer

(resistor)

Imagers with bolometers:

- \star No doubt they are nice detectors for CMB:
 - wide band
 - low noise (background limited)
- ★ Especially true for a satellite (small background)

Interferometers:

\star Long history in CMB

- CMB anisotropies in the late 90s (CAT: Ist detection of subdegrees anisotropies, VSA)
- CMB polarization Ist detection (DASI, CBI)

★ Technology used so far

- Antennas + HEMTs : higher noise
- Correlators : hard to scale to large #channels
- ★ Clean systematics:
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)

Can these two nice devices be combined ?

Bolometric Interfer

Exploring the primordial Universe with the Cosmic Microwave Background

Imaging and Interferometry

A-COMA WMAP CBI ACDAR

Imager

Imagers with bolometers:

- \star No doubt they are nice detectors for CMB:
 - wide band
 - low noise (background limited)
- Especially true for a satellite (small background)

Interferometers:

\star Long history in CMB

- CMB anisotropies in the late 90s (CAT: 1st detection of subdegrees anisotropies,VSA)
- CMB polarization Ist detection (DASI, CBI)
- ★ Technology used so far
 - Antennas + HEMTs : higher noise
 - Correlators : hard to scale to large #channels
- ★ Clean systematics:
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)
- Can these two nice devices be combined ?
 - Bolometric Interferometry !

Exploring the primordial Universe with the Cosmic Microwave Background

Imager

Correlation + detection

Imagers with bolometers:

- \star No doubt they are nice detectors for CMB:
 - wide band
 - low noise (background limited)
- ★ Especially true for a satellite (small background)

Interferometers:

\star Long history in CMB

- CMB anisotropies in the late 90s (CAT: Ist detection of subdegrees anisotropies, VSA)
- CMB polarization Ist detection (DASI, CBI)

★ Technology used so far

- Antennas + HEMTs : higher noise
- Correlators : hard to scale to large #channels
- ★ Clean systematics:
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)

Can these two nice devices be combined ?

Bolometric Interfer

Exploring the primordial Universe with the Cosmic Microwave Background

Imaging and Interferometry

A-COMA WMAP CBI ACDAR

Imager

Imagers with bolometers:

- \star No doubt they are nice detectors for CMB:
 - wide band
 - low noise (background limited)
- ★ Especially true for a satellite (small background)

Interferometers:

Imaging and

\star Long history in CMB

- CMB anisotropies in the late 90s (CAT: Ist detection of subdegrees anisotropies, VSA)
- CMB polarization Ist detection (DASI, CBI)

★ Technology used so far

- Antennas + HEMTs : higher noise
- Correlators : hard to scale to large #channels
- ★ Clean systematics:
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)

Can these two nice devices be combined ?

Bolometric Interfer

Exploring the primordial Universe with the Cosmic Microwave Background

Good sensitivity

Good control of systematics

Both

n - NDIP - Lyon - July 4th 2011

Experimental projects for B mode search

Planck !

- ★ Possible detection of r=0.03 at 95% C.L. (28 months)
- ★ Complete sky \Rightarrow reionization peak ($\ell \sim 7$)

Suborbital

- \rightarrow (USA Europe)
- ★ Imagers : BICEP, EBEX, SPIDER, QUIET, POLAR BEAR
- ★ Heterodyne interferometers: CHIPS?
- ★ Bolometric Interferometers: QUBIC

Future satellite missions (not yet ...) ★ CMBPol ★ BPOL

NB: almost only imagers except QUBIC

Experimental projects for B mode search

Planck !

- ★ Possible detection of r=0.03 at 95% C.L. (28 months)
- ★ Complete sky \Rightarrow reionization peak ($\ell \sim 7$)

Suborbital

- → (USA Europe)
- ★ Imagers : BICEP, EBEX, SPIDER, QUIET, POLAR BEAR
- ★ Heterodyne interferometers: <u>CHIPS</u>?
- ★ Bolometric Interferometers: QUBIC

Future satellite missions (not yet ...) ★ CMBPol ★ BPOL

NB: almost only imagers except QUBIC

The QUBIC collaboration

APC Paris, France IAS Orsay, France CSNSM Orsay, France **CESR Toulouse, France IUCAA**, Pune, India **Maynooth University, Ireland** Universita di Milano-Bicocca, Italy Universita La Sapienza, Roma, Italy University of Manchester, UK **Richmond University, USA Brown University, USA** University of Wisconsin, USA

E. Battistelli^e, A. Baú^f, D. Bennett¹, L. Bergé^c, J.-Ph. Bernard^b, P. de Bernardis^e, G. Bordier^a, A. Bounab^b, É. Bréelle^a, E.F. Bunn^j, M. Calvo^e, R. Charlassier^a, S. Collin^c, A. Coppolecchia^e, A. Cruciani^e, G. Curran¹, M. de Petris e, L. Dumoulin c, A. Gaultⁱ, M. Gervasi^f, A. Ghribi^a, M. Giard^b, C. Giordano^e, Y. Giraud-Héraud^a, M. Gradziel¹, L. Guglielmi^a, J.-Ch. Hamilton^{a,*}, V. Haynes^g, J. Kaplan^a, A. Korotkov^h, J. Landé^b, B. Maffei^g, M. Maiello^m, S. Malu^k, S. Marnieros^c, J. Martino^a, S. Masi^e, A. Murphy¹, F. Nati^e, C. O'Sullivan¹, F. Pajot^d, A. Passerini^f, S. Peterzen^e, F. Piacentini^e, M. Piat^a, L. Piccirillo^g, G. Pisano^g, G. Polenta^{e,n,o}, D. Prêle^a, D. Romano^e, C. Rosset^a, M. Salatino^e, A. Schillaci^e, G. Sironi^f, R. Sordini^e, S. Spinelli^f, A. Tartari^f, P. Timbieⁱ, G. Tucker^h, L. Vibert^d, F. Voisin^a, R.A. Watson^g, M. Zannoni^f, The QUBIC collaboration

arXiv:1010.0645 ~ Astroparticle Physics 34 (2011) 705-71

Exploring the primordial Universe with the Cosmic Microwave Background

Interferometry in a nutshell

- **★** Baseline: $||\vec{u}|| = \frac{D}{\lambda}$
- Primary beam: $B(\vec{x})$
- ★ Correlator signal : $S(\vec{u}) = \int E_1(\vec{n}) E_2^{\star}(\vec{n}) B^2(\vec{n}) d\vec{n}$
- ★ Phase difference : $\delta = 2\pi \vec{u} \cdot \vec{x}$ → $E_2^{\star}(\vec{n}) = E_1^{\star}(\vec{n}) \exp(2i\pi \vec{u} \cdot \vec{x})$
- ★ Correlator signal (visibilities) : $S(\vec{u}) = \int |E(\vec{n})|^2 B^2(\vec{n}) \exp(2i\pi \vec{u} \cdot \vec{x}) d\vec{n}$

Interferometry in a nutshell

- **★** Baseline: $||\vec{u}|| = \frac{D}{\lambda}$
- Primary beam: $B(\vec{x})$
- ★ Correlator signal : $S(\vec{u}) = \int E_1(\vec{n}) E_2^{\star}(\vec{n}) B^2(\vec{n}) d\vec{n}$
- ★ Phase difference : $\delta = 2\pi \vec{u} \cdot \vec{x}$ → $E_2^{\star}(\vec{n}) = E_1^{\star}(\vec{n}) \exp(2i\pi \vec{u} \cdot \vec{x})$
- ★ Correlator signal (visibilities) : $S(\vec{u}) = \int |E(\vec{n})|^2 B^2(\vec{n}) \exp(2i\pi \vec{u} \cdot \vec{x}) d\vec{n}$

An interferometer measures the Fourier Transform of the observed sky patch at modes : $\ell = 2\pi ||\vec{u}||$

Exploring the primordial Universe with the Cosmic Microwave Background

 $\vec{x} = \vec{n} - \vec{n}_0$

 \vec{n}

 \vec{u}

Correlator

Signal

Exploring the primordial Universe with the Cosmic Microwave Background

~40 cm Sky

Exploring the primordial Universe with the Cosmic Microwave Background

~40 cm Sky

Exploring the primordial Universe with the Cosmic Microwave Background

I horn open

Exploring the primordial Universe with the Cosmic Microwave Background

I horn open

l baseline

baseline

I baseline

total signal (all baselines)

fringes successfuly observed with MBI-4 [Timbie et al. 2006]

~40 cm Sky

Exploring the primordial Universe with the Cosmic Microwave Background

Horns and baselines

Primary horns array

Fourier plane coverage

150 GHz, 20x20 horns, 14 deg. FWHM, D=1.2 cm

Exploring the primordial Universe with the Cosmic Microwave Background

Horns and baselines

Primary horns array

Fourier plane coverage

150 GHz, 20x20 horns, 14 deg. FWHM, D=1.2 cm

Exploring the primordial Universe with the Cosmic Microwave Background

Horns and baselines

Primary horns array

Fourier plane coverage

150 GHz, 20x20 horns, 14 deg. FWHM, D=1.2 cm

Exploring the primordial Universe with the Cosmic Microwave Background

Signal in QUBIC

• Signal on bolometer d_P (HWP modulation) :

 $R(\vec{d_p}, t) = S_I(\vec{d_p}) \pm \cos(4\omega t)S_Q(\vec{d_p}) \pm \sin(4\omega t)S_U(\vec{d_p})$

+ for X focal plane- for Y focal plane

where S_X is the «synthesized image» : our observable

- FFT of visibilities in traditional interferometry
- Sky convolved with the «synthetic beam»

 $S_X(\vec{d_p}) = \int X(\vec{n}) B_s^p(\vec{n}) \mathrm{d}\vec{n}$

Synthetic beam formed by the set of baselines

★ (x_i = locations of primary horns, D_f = focal length of the combiner) $B_s^p(\vec{n}) = B_{\text{prim}}(\vec{n}) \int \int B_{\text{sec}}(\vec{d}) \times \left| \sum_i \exp\left[i2\pi \frac{\vec{x}_i}{\lambda} \cdot \left(\frac{d}{D_f} - \vec{n}\right) \right] \right|^2 J(\vec{\nu}) \Theta(\vec{d} - \vec{d}_p) d\nu d\vec{d}$

Signal in QUBIC

• Signal on bolometer d_P (HWP modulation) :

 $R(\vec{d_p}, t) = S_I(\vec{d_p}) \pm \cos(4\omega t)S_Q(\vec{d_p}) \pm \sin(4\omega t)S_U(\vec{d_p})$

+ for X focal plane- for Y focal plane

• where S_X is the «synthesized image» : our observable

- FFT of visibilities in traditional interferometry
- Sky convolved with the «synthetic beam»

 $S_X(\vec{d_p}) = \int X(\vec{n}) B_s^p(\vec{n}) \mathrm{d}\vec{n}$

Synthetic beam formed by the set of baselines

(x_i = locations of primary horns, D_f = focal length of the combiner) $B_s^p(\vec{n}) = B_{\text{prim}}(\vec{n}) \int \int B_{\text{sec}}(\vec{d}) \times \left| \sum_i \exp\left[i2\pi \frac{\vec{x}_i}{\lambda} \cdot \left(\frac{d}{D_f} - \vec{n}\right) \right] \right|^2 J(\vec{\nu}) \Theta(\vec{d} - \vec{d}_p) d\nu d\vec{d}$

QUBIC is an imager where the pupil has been filled with holes in order to filter the sky in Fourier space

 \Leftrightarrow An imager with the synthesized beam

 $\Leftrightarrow \mathsf{An interferometer performing direct synthesis imaging}$

Exploring the primordial Universe with the Cosmic Microwave Background

Exploring the primordial Universe with the Cosmic Microwave Background

Exploring the primordial Universe with the Cosmic Microwave Background

Synthesized beam

Replicated peaks are not (uncontrolled) sidelobes:

- Extremely well known (as much as the main peak)
- The structure of the synthesized beam gives us spatial sensitivity
- Optimal map-making for B.I. in progress

Optical aberrations?

Low aberrations required

 ★ equivalent baselines need to have identical fringe patterns

Off-Axis Gregorian (very fast)

- ★ C. O'Sullivan Team Maynooth (Ireland)
- ★ 300 mm equivalent focal length
- ★ ~ 0.5 m mirrors

Optical aberrations ?

Low aberrations required

★ equivalent baselines need to have identical fringe patterns

Off-Axis Gregorian (very fast)

- ★ C. O'Sullivan Team Maynooth (Ireland)
- ★ 300 mm equivalent focal length
- ★ ~ 0.5 m mirrors

Optical aberrations ?

Low aberrations required

★ equivalent baselines need to have identical fringe patterns

Off-Axis Gregorian (very fast)

- ★ C. O'Sullivan Team Maynooth (Ireland)
 ★ 300 mm equivalent focal length
- ★ ~ 0.5 m mirrors

LogScale Synthesized beam

Optical aberrations ?

Low aberrations required

★ equivalent baselines need to have identical fringe patterns

• Off-Axis Gregorian (very fast)

- ★ C. O'Sullivan Team Maynooth (Ireland)
 ★ 300 mm equivalent focal length
- ★ ~ 0.5 m mirrors

Exploring the primordial Universe with the Cosmic Microwave Background

B.I. Technology

QUBIC requires the same components as an imager

★ Most of them are already available:

- <u>Cryostat</u>: 4K with Pulse-Tube, 100 mK with dilution fridge
- Large window : zotefoam: good mechanical resistance and low emissivity
- Horns : Corrugated (Clover-like) low Xpol, low sidelobes and low return-loss
- <u>HWP</u>: Metal-mesh HWP (Manchester), wide-band
- <u>Filters</u>: Interference mesh filters at each cryogenic stage
- Optical combiner : fast & compact off-axis gregorian telescope

★ Some still require some reasonnable amount of R&D

- Platelets horns: Fabrication significantly cheaper (~ 100€/horn) than usual electroforming.
 - Prototype realized, and tested: good beams [Publication in prep.]
 Switches : basically on/off on each channel
 - shutters between the back-to-back horns activted by electromagnets
 - Tested with excellent performances [Publication in prep.]
- Detectors : NbSi TES with 5-10 x 10⁻¹⁸ W.Hz^{-1/2} and τ < 10 ms
 - \rightarrow 2x(4x256) elements array on the way [Piat et al. 2008]
- Readout : Time domain multiplexing with SQUIDs & a 4K SiGe ASIC
 - ⇒ 24:1 demonstrated succesfully [Voisin et al. 2008, Prêle et al. 2009]
 - ➡ 128:1 being finalized

Exploring the primordial Universe with the Cosmic Microwave Background

Ready

Ongoing

in **QUBIC**

QUBIC Cryostat

Designed/Fabricated in Roma
★ P. de Bernardis / S. Masi

• 40 cm window

★ Stack (~20 cm) of zotefoam layers

- Ist stage: 4K: Pulse-Tube
 Filters, horns, HWP, mirrors, polarizing grid
- 2nd stage: I00mK dilution fridge
 TC pre-cooling the mixture

QUBIC Cryostat

- Designed/Fabricated in Roma
 * P. de Bernardis / S. Masi
- 40 cm window

★ Stack (~20 cm) of zotefoam layers

- Ist stage: 4K: Pulse-Tube
 ★ Filters, horns, HWP, mirrors, polarizing grid
- 2nd stage: I00mK dilution
 fridge
 TC pre-cooling the mixture

Designed by Manchester

- B. Maffei / G. Pisano
- Clover-like profiled corrugated horns
- 150GHz, 14 deg. FWHM, 1.2 cm diam. (close to diffraction limit)
- Excellent beam/Cross Pol. perfs

★ Usual fabrication:

- Electroforming
- Expensive (800\$ / horn)

Platelets fabrication investigated at APC (É. Bréelle)

- 271 thin copper plates \star
- Holes using chemical etching \star
- 100-200€ / horn
- Ist tests 10 days ago:
 - Good beams/cross polarization

Designed by Manchester

- ★ B. Maffei / G. Pisano
- Clover-like profiled corrugated horns
- ★ 150GHz, 14 deg. FWHM, 1.2 cm diam. (close to diffraction limit)
- ★ Excellent beam/Cross Pol. perfs

★ Usual fabrication:

- Electroforming
- Expensive (800\$ / horn)

Platelets fabrication investigated at APC (É. Bréelle)

- \star 271 thin copper plates
- \star Holes using chemical etching
- ★ 100-200€ / horn
- ★ Ist tests 10 days ago:
 - Good beams/cross polarization

Designed by Manchester

- ★ B. Maffei / G. Pisano
- Clover-like profiled corrugated horns
- ★ 150GHz, 14 deg. FWHM, 1.2 cm diam. (close to diffraction limit)
- ★ Excellent beam/Cross Pol. perfs

★ Usual fabrication:

- Electroforming
- Expensive (800\$ / horn)

Platelets fabrication investigated at APC (É. Bréelle)

- \star 271 thin copper plates
- \star Holes using chemical etching
- ★ 100-200€ / horn
- ★ Ist tests 10 days ago:
 - Good beams/cross polarization

97 CHz Horn development & tests

Designed by Manchester

- ★ B. Maffei / G. Pisano
- Clover-like profiled corrugated horns
- ★ 150GHz, 14 deg. FWHM, 1.2 cm diam. (close to diffraction limit)
- ★ Excellent beam/Cross Pol. perfs

★ Usual fabrication:

- Electroforming
- Expensive (800\$ / horn)

Platelets fabrication investigated at APC (É. Bréelle)

- \star 271 thin copper plates
- \star Holes using chemical etching
- ★ 100-200€ / horn
- ★ Ist tests 10 days ago:
 - Good beams/cross polarization

Detection Chain

TES + SQUIDs + 4K SiGe ASIC Mux

- \star APC: Michel Piat
- ★ CSNSM: Stefanos Marnieros

2 arrays of 1024 NbSi TES

- ★ Each array : 4x256 elements
- ★ 100 mK bath (dilution)
- \star 3 mm size
- ★ NEP ~ 5.10⁻¹⁸ W.Hz^{-1/2}
- \star time constant ~ 10 ms

Multiplexed Readout

- ★ SQUIDs pre-amplifier+mux
 - 32:1 multiplexing
- 4K SiGe ASIC (amp+mux)
 - 4:1 multiplexing
- ★ 128 channels / ASIC
- ★ Low noise: ~200 pV.Hz^{-1/2}

Detection Chain

TES + SQUIDs + 4K SiGe ASIC Mux

- \star APC: Michel Piat
- ★ CSNSM: Stefanos Marnieros

2 arrays of 1024 NbSi TES

- ★ Each array : 4x256 elements
- ★ 100 mK bath (dilution)
- \star 3 mm size
- ★ NEP ~ 5.10⁻¹⁸ W.Hz^{-1/2}
- \star time constant ~ 10 ms

Multiplexed Readout

- ★ SQUIDs pre-amplifier+mux
 - 32:1 multiplexing
- 4K SiGe ASIC (amp+mux)
 - 4:1 multiplexing
- ★ 128 channels / ASIC
- ★ Low noise: ~200 pV.Hz^{-1/2}

Exploring the primordial Universe with the Cosmic Microwave Background

B-mode sensitivity

Exploring the primordial Universe with the Cosmic Microwave Background

«r» sensitivity

Exploring the primordial Universe with the Cosmic Microwave Background

Systematics

• Different from imaging, possibly smaller ...

\star cross-polarization:

- Telescope cross-polarization in a imager is before the HWP
 - Modulated as the sky signal
- In a B.I. the optical combiner is after the HWP
 - Telescope cross-polarization doesn't spoil Q,U

\star Time constants

- Slower scanning strategy for B.I.
 - Low impact of long time constants

★ Beams

- Lower sidelobes from naked primary horns (no telescope) :
 - Iower ground pickup
- Synthetized beam known (calculated & calibrated) with excellent accuracy
 - better controlled at high multipoles
 - Iow impact of primary beam differences

Autocalibration

Autocalibration allows for systematics control

- ★ Use array redundancy [e.g. Wieiringa, 1991 Tegmark & Zaldarriaga, 2010]
 - Redundant baselines: same visibility if no sytematics
 - Model systematics using Jones matrices (gains and coupling / channel / pixel)
 - Open 2 horns at a time (close the rest: implies switches between back-to-back horns)
 - Construct a system of equations : overconstrained if Nhorns > 20
 - recover systematics/channel/pixel with a polarized source !

Back of the envelope : NET=300 μ K.Hz^{-1/2} and 100 K source : ~ 3x10⁻⁶ on each syst. coeff. with 1 sec/baseline

Autocalibration

Autocalibration allows for systematics control

- ★ Use array redundancy [e.g. Wieiringa, 1991 Tegmark & Zaldarriaga, 2010]
 - Redundant baselines: same visibility if no sytematics
 - Model systematics using Jones matrices (gains and coupling / channel / pixel)
 - Open 2 horns at a time (close the rest: implies switches between back-to-back horns)
 - Construct a system of equations : overconstrained if Nhorns > 20
 - recover systematics/channel/pixel with a polarized source !

Back of the envelope : NET=300 μ K.Hz^{-1/2} and 100 K source : ~ 3x10⁻⁶ on each syst. coeff. with 1 sec/baseline

B.I. allows for internal systematic effects measurement

Dôme C, Antarctica

- French-Italian station
 ★ 3000 m a.s.l.
- Excellent CMB site
 - ★ 24h observations at high elevation
 ★ PWV < 0.5 mm in winter
 - ★ PWV < 1.5 mm in summer

Equivalent atmospheric brightness
 I4K at zenith (I6.5K in Chajnantor, 2IK @45deg)

reducing T_{atm} by 30%

reducing integration time by 30% + another ~50% as PWV< Imm most of the time

Summary and prospects

• QUBIC is a novel instrument for CMB polarimetry

- ★ Synthetic imager: hybrid between imager and interferomter
- ★ High sensitivity
- \star Low and controlable systematics
- \star Technology readiness: quite high finally ... almost everything on the shelf
- ★ [only way to get an inexpensive 400 elements interferometer]

Plans:

- ★ First module: 2013 2014 (~1 M€ not funded yet ...)
 - 400 elements, 150 GHz, 25% BW, primary beam 14 deg., 1024x2 detectors
 - Integration and first light in lab: 2013
 - Observations in 2014 from Dome C, Antarctica : r~0.05 at 90% C.L. with I year

Longer term:

- 6 modules at 90, 150 and 220 GHz
- Observations from Dome C, Antarctica: r ~ 0.01 at 90% C.L. with 1 year

