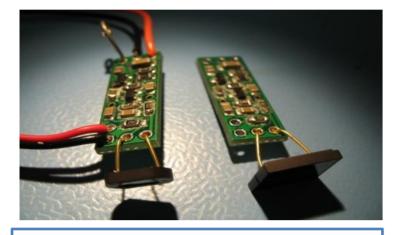
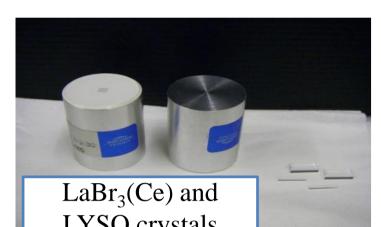
Characterisation of Silicon Photomultipliers for Time-Of-Flight Applications

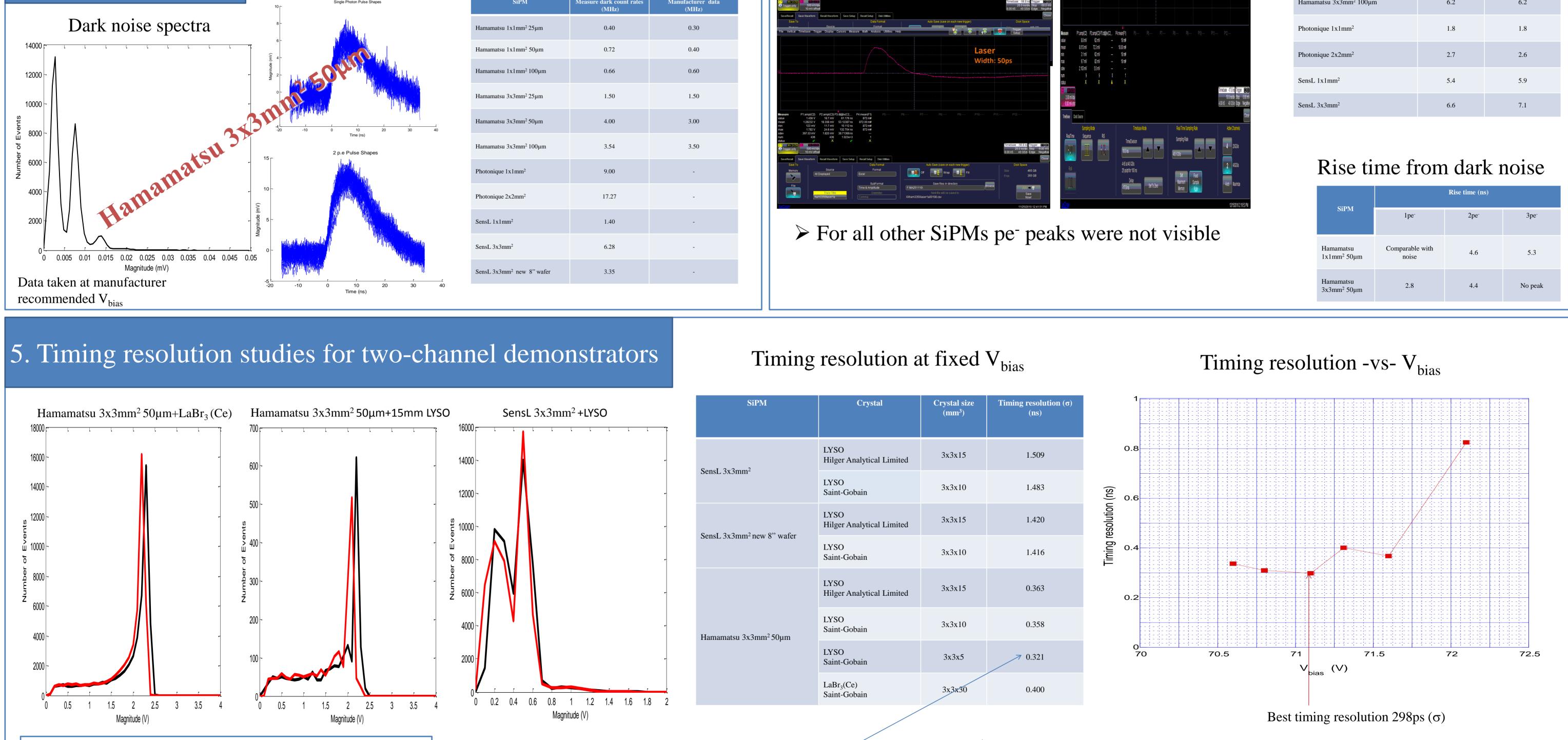
M. Ahmed¹*, B. Camanzi² and J. Matheson²

¹Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford OX3 7DQ, UK ²Science and Technology Facilities Council, Harwell Campus, OX11 0QX, UK


*Lead Author

The recently developed Silicon PhotoMultiplier (SiPM) is a solid state photon detector operating in the Geiger mode. Due to avalanche nature of its signal, it has a fast response time; this makes it an ideal candidate for use in fast Time-Of-Flight (TOF) applications. This work is aimed at the application of TOF to medical imaging. In this study we characterised SiPMs from three manufacturers: breakdown voltages, dark count rates, rise times of dark noise signals and signal in response to light sources were measured. Two-channel demonstrators were built coupling SiPMs to LaBr₃(Ce) and LYSO crystals and their time performances were studied. The best timing resolution was measured to be 298ps (σ).


1. The system		2. I-V curves and bre	akdown voltages	SiPM		Breakdown Voltage (V)	Recommended V _{bias} (V)
Scope ²² Na Source – – – – – – – – – – – – – – – – – – –	Electronics:			Hamamatsu 3x3mm ² 25µm	SiPM 1	69.60	71.10
	1. Read-out boards: preamp boards from				SiPM 2 SiPM 1	69.60 69.60	70.96
Keithley	Photonique, ~ 700ps rise time, gain 10x-		10 ⁻⁶	Hamamatsu 3x3mm ² 50µm	SiPM 2	69.60	71.31
	20x	Breakdown voltages		Hamamatsu 3x3mm ² 100µm	SiPM 1 SiPM 2	69.40 69.30	70.04 69.71



The experimental set-up for timing resolution studies

SiPMs & Photonique boards

2. Power supply: Keithley 2612 twochannel sourcemeter 200V

DAQ: Lecroy Wave Pro 725Zi 2.5GHz oscilloscope, 40GHz sampling rate

Sources:

Cell Size

25µm,50µm,100µm

25µm,50µm,100µn

No information

No information

No information

No information

Length (mm)

Area (mm²

1x1

3x3

2x2

1x1

3x3

Area (mm²

1x1

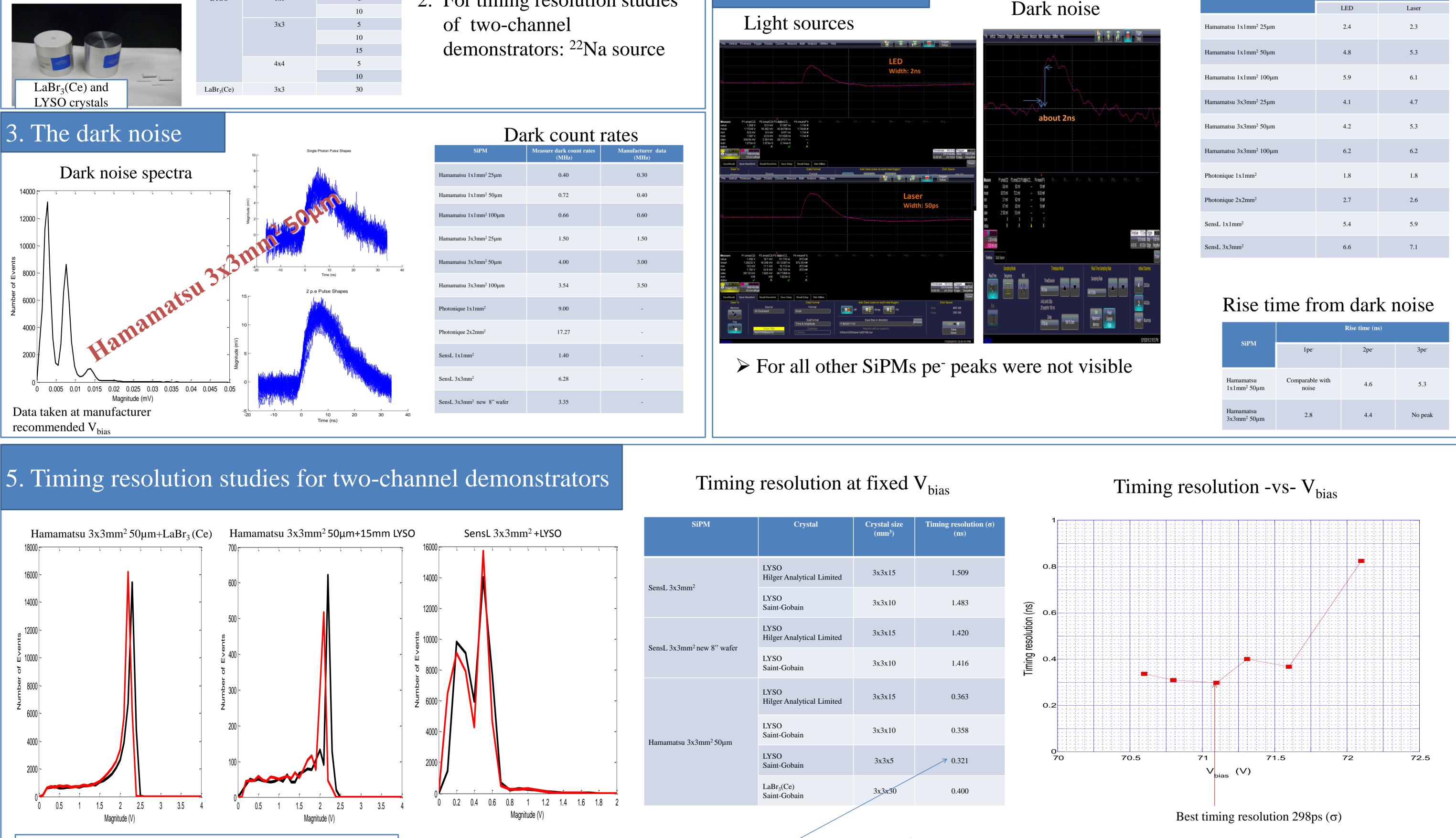
Hamamatsu

Photonique

Crystal

LYSO

SensL


1. For SiPM characterisation: blue (450nm peak-emission) LED and 1050nm Laser both from PicoQuant

2. For timing resolution studies of two-channel demonstrators: ²²Na source

Dark count rates							
SiPM	Measure dark count rates (MHz)	Manufacturer data (MHz)					
Hamamatsu 1x1mm ² 25µm	0.40	0.30					
Hamamatsu 1x1mm ² 50µm	0.72	0.40					
Hamamatsu 1x1mm ² 100µm	0.66	0.60					
Hamamatsu 3x3mm ² 25µm	1.50	1.50					
Hamamatsu 3x3mm ² 50µm	4.00	3.00					

were calculated for all SiPMs. These breakdown voltages were found to be in the range 1.0-2.0V below the operating point (V_{bias}) recommended by the manufacturers.

oltage(V) Break down voltage						SiPM 2	27.50	29					
67	68	69	9 ′、	,70		71		7	2	SensL 3x3mm ²	SiPM 1	27.50	29
											SiPM 2		
			/						ł	SensL 1x1mm ²		28.20	29
									T.		SiPM 1	28.20	29
									ŧ		SiPM 2	26.50	28
									ŧ	Photonique 2x2mm ²			
					<u> </u>						SiPM 1	26.50	27
								t t i	+	r notoinquo rirrinin	SiPM 2	17.30	19
									Photonique 1x1mm ²	SiPM 1	17.20	19	
									+		SiPM 2	68.60	70
									÷.	Hamamatsu 1x1mm ² 100µm	C:DM 2	68.60	70
											SiPM 1	69.20	70
									+			68.20	69
									+	Hamamatsu 1x1mm ² 50µm	SiPM 1	68.20	69
				4		24			ŧ				
). 			Ŧ		SiPM 2	69.50	71
			<u></u>	 	<u>- 4</u>	<u> </u> 	<u> </u>	: : :-:	Hamamatsu 1x1mm ² 25µm		SiPM 1	68.60	70
					_								70

Rise time from LED and Laser

SiPM	Rise time (ns)				
	LED	Laser			
Hamamatsu 1x1mm ² 25µm	2.4	2.3			
Hamamatsu 1x1mm ² 50µm	4.8	5.3			
Hamamatsu 1x1mm ² 100µm	5.9	6.1			
Hamamatsu 3x3mm ² 25µm	4.1	4.7			
Hamamatsu 3x3mm ² 50µm	4.2	5.3			
Hamamatsu 3x3mm ² 100µm	6.2	6.2			
Photonique 1x1mm ²	1.8	1.8			
Photonique 2x2mm ²	2.7	2.6			
SensL 1x1mm ²	5.4	5.9			
SensL 3x3mm ²	6.6	7.1			

4. Rise time studies

Output signals of three different two-channel	Timing resolutions at SiPM fixed V _{bias} recommended	Timing resolution as function of SiPM V _{bias} :
demonstrators, clearly showing the 511 keV	by manufacturers:	 Carried out only for LaBr₃(Ce) + Hamamatsu 3x3mm² 50 μm
peaks from ²² Na	• The best timing resolution is $321ps(\sigma)$, obtained for	• Best timing resolution of 298ps (σ) measured at 0.2V below
	5mm length LYSO + Hamamatsu 3x3mm ² 50µm	recommended V _{bias}

6. Conclusions and future work

A preliminary characterisation of SiPMs was carried out using a simple data acquisition system based on a fast oscilloscope. Breakdown voltages, dark count rates and signal rise times were measured for all SiPMs. The timing resolutions of two-channel demonstrators were measured and the best one was found to be 298ps (σ). This preliminary result is comparable to other ones reported in literature. Based on our results we identified our system limitation in the read-out electronics, which we are in the process of upgrading. We are expecting further improvements in the timing performances with properly engineered two-channel demonstrator systems and set-ups. Plan for future work:

• Acquire faster pre-amplifiers for the Hamamatsu 1x1mm² 50µm and Hamamatsu 3x3mm² 50µm SiPMs that are better matched to their capacitance and repeat measurements with these devices.

• Investigate the effects on the timing resolution of the crystal size and of the Ce concentration in the case of $LaBr_3(Ce)$.

