

Digital Multi-PMT optical module for the KM3NeT neutrino telescope

O. Kavatsyuk, Q. Dorosti-Hasankiadeh, H. Löhner

KVI, University of Groningen, The Netherlands, representing the KM3NeT Consortium

KM3NeT at a depth of 3000 - 5000 m

Required characteristics for 3-inch PMTs

Cathode (CsK) quantum efficiency	>32% at 404 nm >20% at 470 nm
Inhomogeneity of cathode response	< 10%
Dark count rate	< 3 kHz at 15°C
Transit time spread	< 2 ns (σ)
Peak-to-valley ratio	> 3
Operation Temperature	10 – 25°C

+ Very good one-vs.-two photoelectron separation

- + Wide-angle photon acceptance
- + Reduced environmental background by requiring local coincidences
- + Good QE and transit time spread
- + Increased photo sensitivity by reflective rings surrounding PMTs
- + Longer PMT lifetime (smaller photo cathode and less collected charge per year)
- + No magnetic shielding needed

Cross section A-A
1-Heat conductor, 2,3- Foam cores, 4-PMT with PMT base,
5-Expansion cone, 6-Optical coupler, 7-Nanobeacon,
8-Glass sphere, 9-Piezo element.

Acknowledgements

This work is supported through the EU, FP6 Contract no. 011937, FP7 grant agreement no. 212252, and the Dutch Ministry of Education, Culture and Science.

KM3NeT

Carles Carlos

KM3NeT [1] is a future European research facility in the Mediterranean Sea that will house a neutrino telescope of multi-cubic-kilometer scale. Cherenkov light from neutrino-induced secondary charged particles will be detected by an array of optical modules (OMs) — high-pressure resistant glass spheres containing photomultiplier tubes.

Detection unit (DU)

The DU is a **flexible tower** of 900 m height with 20 storeys (floors) at 40 m distance.

Bar

Storey: 6m long bar equipped with 2 multi-PMT OMs. **Multi-PMT OM**: pressure sphere containing 31 3-inch PMTs.

Digital Multi-PM Optical Module

The multi-PMT OM is designed to:

- minimize the number of connectors in the detection system;
- measure optical photons at the single-photon level
- → 31 PMTs, 19 (12) in lower (upper) hemisphere, suspended in foam support
 → Optical gel (optical contact)
 → OM-logic board converts signals from the PMTs to:
 - time, amplitude and PMT (OM) identification; contains electronic and photonic components for an optical serial link to the shore
 - → Signal collection boards
 - link the PMTs and the OM-logic board
 - → Printed circuit (converter) board provides all necessary DC power
 - → Adjustable HV supply for each PMT
 - → Aluminium structure
 - provides heat conduction between the electronics and the exterior of the sphere
 - → Overall power consumption: 7 W / OM
 - → Colour point-to-point connections
 of individual OMs to shore station

Expansion Cone

6 x 10-inch OMs on 6m ba

E_{v.MC} [GeV]

Monte-Carlo generated [2] effective area for

neutrino detection as function of the neutrino

energy after full reconstruction for the KM3NeT

design option with multi-PMT OMs (solid red

curve) and with conventional OMs hosting 10-

inch PMTs (black dashed curve).

Ratio is shown in the bottom panel.

- → The photon collection area will be extended by a bevelled reflective aluminium collar, the expansion cone (filled with silicon gel)
- → Measurements reveal an increase in collection efficiency by 30 % on average for angles of incidence from -50° to +45°, with a maximum of 35 % for perpendicular incidence
- Ray-tracing calculations were performed with SLitrani, a general purpose Monte-Carlo program simulating light propagation [3], resulting in an overall photocathode acceptance increase of 27 % integrated over all angles of incidence

References

- 1. U. Katz, NIM A 602, 40-46 (2009); P.~Bagley et al., KM3NeT Conceptual Design Report, 2008, ISBN 978-90-6488-031-5; www.km3net.org/CDR/CDR-KM3NeT.pdf.
- C. Kopper, private communication
 F.X. Gentit, Nucl. Instrum. Meth. A 486 (2002) 35-39
-). 1 .A. Geniii, Nuci. Instrum. Meth. A 400 (2002) 30