Imaging X-Ray Detector Front-end with High Dynamic Range: **IDeF-X HD**

O. Gevin¹, F. Lugiez¹, O. Limousin², A. Michalowska¹, O. Lemaire¹, P. Baron¹, E. Delagnes¹ CEA/SACLAY/DSM/IRFU/Service d'électronique, détecteurs et informatique

Gif-sur-Yvette, FRANCE (

² CEA/SACLAY/DSM/IRFU/Service d'Astrophysique

OBJECTIVES

1 (P*

MACSI (Modular Assembly of Caliste Spectro-Imager) gamma ray camera module with large focal plane array

2048 pixels, 8 Caliste 256 modules

IDeF-X HD is designed for MACSI mini gamma-ray camera space for spectroscopy in applications with high spectral resolution (FWHM<1keV (a) 60keV).

Presented ASIC is a new CMOS readout circuit realized in AMS 0.35µm. It is a low noise, low power, 32-channel front-end with self-triggering capability.

The circuit is aimed for readout of pixelated Cd(Zn)Te with 625µm pitch. It is optimized for input capacitance of 2pF and 20pA dark current.

Scheme of the chip : each channel includes: continuous reset CSA with variable current, Non stationary noise suppressor (NSNS), polezero cancellation stage (PZ), gain stage, shaper (RC^2), baseline holder (BLH), peak detector, discriminator with individual 6 bits threshold. Many parameters are tunable via serial link : gain (dynamic range), peak time, dark input current (I_{LEAK}) , discrimination threshold, test mask ...

Three readout modes are achievable : hit channel only, "on demand", all channels.

Main characteristics of the chip:

Technology	CMOS AMS 0.35µm
Channel	32
Power supply	3.3V
Typical power consumption	26mW (800µW/channel)
Polarity	Anode
Conversion factor	50-200 mV/fC (programmable)
Dynamic range (charge)	225 ke [.] (1 MeV)
Discrimination threshold	90 e [.] → 2.3k e [.]
Peak time	0.7µs → 10.7µs
Tomporatura concor	1 5°C at -45 20 °C

Image of IDeF-X HD SEL hardened design in the standard CMOS AMS 0.35µm technology

RESULTS

Functionality

Power consumption:

- ✤ ASIC total: 26mW
- Per channel: 0.8mW

Peak time:

- ✤ The pole zero cancellation stage operates at all peak times
- Gain constant with peak time
- ✤ No variation of the baseline with ILEAK 0.1pA .. 4nA

different peak times. (gain=200mV/fC, $I_{LEAK} = 20 pA$, Qin=3.2fC

Gain MEASURE Dynamic Dynamic INL nge CdTe [eV] rang [fC] [mV/fC] [%] 51.8 36 993 k 1.19 102.2 22 607 k 1.39 152.5 13 5 1.04 372 k 203.8 303k 1.16 11

Transfer function ($I_{LEAK}=20pA$, $t_{PEAK}=10.7\mu A$, at filter output) Dynamic range up to 1MeV with CdTe

Equivalent Noise Charge

Dark current ENC measurement results at 4 different input currents levels (ileak).

 \bullet ENC min = 33 e⁻ rms (750 eV FWHM for CdTe) obtained at the leakage current below 1pA and peak time 10.7µs.

Input Capacitance

The curves ENC = f(Cin) are fitted to extract the slopes ENC/Cin at different peak times $(I_{LEAK}=20pA)$. The slope is plotted against the peak time.

♦ Minimal slope=6e⁻/pF

Spectroscopy measurements

CdTe schottky $2x2x2mm^3$ with Guard Ring, vbias = -1020V, T=-10°C