

Front-end multi-channel PMT-associated readout chip for hodoscope application

	Chip Size	X=2.2mm Y=2.8mm For 16channels	X=2.2mm Y=2.8mm For 16 channels	
Summary and Perspectives				
 A 16 full-channel ASIC (AMS SiGe BiCMOS 350nm) is realized for this application In next version: 	 A new test board is performed soon. 	designed for a real time	beam test which	will be
2. 64 channels in the next chip (4 ASIC/hodoscope)	 Design of a new re 	adout chip with improved	d speed performar	nce to

- ✤ A Time stamper system based on DLL (Delay Locked Loop) with a resulption 195ps has been designing and when the design is validated, it will be integrated
- be coupled with Diamond detectors

S.Deng⁽¹⁻²⁾, H.Mathez⁽¹⁻²⁾, Y.Zoccarato⁽¹⁻²⁾, GN. Lu⁽³⁾ (1) Institut de physque nucléaire de Lyon (IPNL), Université de Lyon, Université Lyon 1, CNRS/IN2P3 (2) MICRHAU: pole de MIcroélectronique Rhone, AUvergne (3) Institut des Nanotechnologies de Lyon(INL), UMR CNRS/ECL/INSA/UCBL

New Developments In Photodetection, 04-08 July 2011