

TUTORIAL

PHOTODETECTION

Rémi BARBIER

University of Lyon IPNL / IN2P3 / CNRS www.ipnl.in2p3.fr/ebcmos

- Sources: slides from ...
 - Yuri MUSIENKO (Boston / INR RAS Moscow)
 - Katsushi ARISAKA (UCLA)
 - Philippe MANGEOT (CEA/DSM/DAPNIA)
 - Thierry GYS (CERN)
 - Alain BARDOUX (CNES)
 - P. DE MOOR (IMEC)
 - And many others
- On the Web
 - Hamamatsu, Photonis SA, Philips, SensL, Radiation Monitoring Devices, Photonique SA, Voxtel, Zecotek Photonics, Amplification technologies, STM, Id Quantique, Micro Photon Device, Intevac, Fairchild Imaging...
- What will not be discussed in this tutorial:
 - IR Imaging devices
 - Gaseous devices
 - X ray detectors
 -
 - Due to personal choice and time constraint

- Part I: The key parameters of the photon detection
- Part II: Photodetectors (basics & trends)
 - Vacuum devices:
 - Photomultiplier Tubes
 - MicroChannel Plate
 - o Hybrid
 - Solid State devices:
 - o PhotoDiode
 - Avalanche Photo Diode : APD
 - Geiger Mode APD : Arrays of SPAD: SiPM / MPPC ...
 - Imaging devices: CCD and sCMOS, EMCCD

Part one : key parameters

- Photometric units
- Photoelectric effect
- The steps of the photon detection
- Quantum Efficiency and Photon Detection Efficiency
- Energy Resolution: Excess Noise Factor, Equivalent Noise Charge
- Spatial resolution & Pixels
- Temporal resolution

We will consider only the detection of VIS photon spectrum

Some Photometric Units:

•Candela (cd): luminous intensity of a source 1 cd = 1.464 10⁻³ = 1/683 W/sr @ 555 nm (sr=steradian)

•<u>Lumen (Im):</u> Luminous flux through a solid angle of 1 sr by a source of 1 cd (1 Im = 1 cdx1sr) @555 nm Rq: Lumen is related to eye sensitivity. For other wavelengths you should use the luminous efficiency.

•Luminous efficiency V(λ): relative eye sensitivity to a given wavelength with a maximum (100%) @ 555 nm

•<u>Lux (lx)</u>: unit of illumination measurement per surface unit (1 lx = 1 lm/m²). This unit is standard in Night Vision

Night Level	#ph/mm ² /s	#ph/pixel*/ms	μLux	ph	λ		luminance	Luminous efficiency
overcast starlight	1,30E+06	1,30E-01	1,00E+02	<i>HI</i>			L. 10-6	Lummous emclency
starlight	1,30E+07	1,30E+00	1,00E+03	#/s/μm²	nm	V(A)	IX 10 °	1
quarter moon	1,30E+08	1,30E+01	1,00E+04	1,000	400	0,0004	0,1	0,9
full moon	1,30E+09	1,30E+02	1,00E+05	1,000	555	1,0000	243,9	0,8
deep twilight	1,30E+10	1,30E+03	1,00E+06	4 000	650	0 4070	22.2	0,7
twilight	1,30E+11	1,30E+04	1,00E+07	1,000	000	0,1070	22,3	0,6
very dark day	1,30E+12	1,30E+05	1,00E+08					0,5
overcast day	1,30E+13	1,30E+06	1,00E+09					0,4
daylight	1,30E+14	1,30E+07	1,00E+10					0,3
direct sunlight	1,30E+15	1,30E+08	1,00E+11					0,1
		* Pixel pitch	n 10 microns	•Photopic: Day Vision •Scotopic: Night Vision 350 400 450 500 550 600 650 700			0 350 400 450 500 550 600 650 700 750	

Introduction: The steps of the Photon Detection

- The 4 steps of the photo-detection process:
 - 1. The primary charge carrier (pe, e/h) is produced
 - 2. The primary charge carrier is collected
 - 3. The primary charge carrier is multiplied/amplified or not (CMOS/CCD/PD)
 - 4. The secondary (or primary) charges are collected and read out
- The measurement process is modified by noise sources and by signal collection inefficiency at each step:

- The photoelectric effect is responsible for the photon detection.
 We can distinguish two types:
- 1. External: the phe is emitted into the vacuum from a photocathode material.
- 2. Internal: the phe is excited and occupies the conduction band of the semiconductor material, the photoconductive effect.

Part I: key parameters – Photon Detection – QE – FF – PDE – DQE ...

Be careful ! each photodetector type has his proper definition of QE and PDE...

- 2. The Fill Factor (FF) is the ratio between the sensitive surface and the detector surface also called geometrical efficiency (ϵ_{geom}).
- 3. Collection Efficiency (CE) is the probability to transfer the primary pe or e/h to the amplification stage or readout channel.
- 4. Multiplication Efficiency (ME) is the prob. that the amplification process give a detectable signal or trigger a multiplication (ϵ_{Geiger}).
- 5. Photon Detection Efficiency (PDE) is the probability that a single photon trigger a detectable output pulse also called the Detective Quantum Efficiency (DQE).

 $\mathsf{DQE} = \mathsf{PDE} = (\mathsf{FF}) \cdot (\mathsf{QE}) \cdot (\mathsf{TE}) \cdot (\mathsf{ME})$

PDE = QE .
$$\varepsilon_{geom}$$
 . ε_{geiger} (SiPM)

Part I: key parameters – Energy resolution and ENF

Energy = Number of collected secondary carriers

 $E = M \times PDE \times N_{\nu}$

Energy Resolution with Readout Noise

$$\frac{1}{SNR} = \frac{\sigma}{E} = \sqrt{\frac{ENF}{PDE \times N_{\gamma}} + \left(\frac{ENC}{M \times PDE \times N_{\gamma}}\right)^2}$$

Multiplication Noise Readout Noise

•M is the Mean Multiplication coefficient M is a stochastic variable with variance ${\sigma_{\!M}}^2$

•ENF is the excess noise factor. ENF is the noise due to the multiplication process

•ENC : Equivalent Noise Charge (readout noise from the electronics)

•PDE is the Photon Detection Efficiency

Excess Noise Factor for single pe: ENF_{1pe} also noted F or sometimes F²

$$ENF_{1pe} = 1 + \frac{\sigma_M^2}{M^2}$$

Many different definitions in the literature

Excess Noise Factor for N_{pe} input carriers: ENF_{Npe} Experimentalist definition

$$ENF_{N_{pe}} = \frac{\sigma_{n_{out}}^2}{\sigma_{n_{in}}^2}$$

$$n_{out} = \sum_{i=1}^{n_{in}} m_i \langle n_{out} \rangle = \langle m \rangle \langle n_{in} \rangle$$

$$\sigma_{n_{out}}^2 = \langle m \rangle^2 \sigma_{n_{in}}^2 + \langle n_{in} \rangle \sigma_m^2$$

Burgess's theorem

$$ENF_{N_{pe}} = M^{2} \left[1 + \frac{\langle n_{in} \rangle}{\sigma_{n_{in}}^{2}} \left(ENF_{1pe} - 1 \right) \right]$$
$$ENF_{N_{pe}} = M^{2} ENF_{1pe} \quad \text{If } n_{\text{in}} \text{ Poisson}$$

Part I: key parameters - energy resolution

Summary:

 $\frac{1}{SNR} = \frac{\sigma}{E} = \sqrt{\frac{1}{N_{\gamma}}}$ K. Arisaka, NIM A 442 (2000) 80

Ideal case: shot noise

$$\frac{1}{SNR} = \frac{\sigma}{E} = \sqrt{\frac{ENF}{PDE \times N_{\gamma}}} + \left(\frac{ENC}{M \times PDE \times N_{\gamma}}\right)^{2}$$

Slide from K. Arisaka Lecture UCLA

	QE	CE	δ _i	ENF	G	ENC	σ/E
ldeal	1.0	1.0	1000	1.0	10 ⁶	0	√ <mark>1/N</mark>
РМТ	0.5	0.8	10	1.3	10 ⁶	200	√ <mark>3.6/N</mark>
PD	0.8	1.0	-	1.0	1	200	√1.3/N+(300/N) ²
APD	0.8	1.0	2	2.0	50	200	$\sqrt{2.5/N+(5/N)^2}$
HPD	0.5	0.9	1000	1.0	10 ³	200	$\sqrt{2.2/N+(1.1/N)^2}$
HAPD	0.5	0.9	1000	1.0	10 ⁵	200	√ <mark>2.2/N</mark>
CCD	0.8	1.0	-	1.0	1	50	√1.3/N+(60/N) ²
ICCD / ICMOS	0.8	0.7	-	2.0	10 ⁴	50	√5.7N
EMCCD	0.8	1.0	2	2.0	10 ³	50	√ <mark>2.5/N</mark>
EBCCD / EBCMOS	0.5	0.85	1000	1.0	10 ³	50	√2.35/N

Part I: key parameters – energy resolution – figure of merit

Part I: T. Hollenhorst, A theory of multiplication Noise, IEEE Transactions on electron devices Vol. 37. No. 3. MARCH 1990

•Two stages gain: definitions and notations.

- •m_{ij} multiplication gain from i to j is described by a probability distribution function (pdf) P_{ij}(m_{ij}) with ij=01,10,12,21
- •m_{ii}-1 secondary carrier multiplication gain from i to j related to primary carrier gain m_{ii}
- $\bullet \Phi_{ii}$ the generating function of the pdf of m_{ii}
- $\cdot \Psi_{ii}$ the generating function of the pdf of m_{ii}-1

•2 stages generating functions:

$$\phi_{02}(z) = \phi_{01}[\phi_h(z)] \checkmark m_{02} = \sum_{k=1}^{m_{01}} m_h(k)$$

$$\phi_{20}(z) = \phi_{21}[\phi_e(z)] \qquad \phi_h(z) = z\psi_{12}[z\psi_{10}[\phi_h(z)]]$$

$$\phi_h(z) = z\psi_{12}[\phi_e(z)] \qquad \phi_e(z) = z\psi_{10}[z\psi_{12}[\phi_e(z)]]$$

$$\phi_e(z) = z\psi_{10}[\phi_h(z)]$$

<u>Aim:</u> compute the gain and the ENF of a two stage multiplication process and then to generalize to N identical stages using generating function probability theory:

-PMT -APD -EMCCD ...

Part I: T. Hollenhorst, A theory of multiplication Noise, IEEE Transactions on electron devices Vol. 37, No. 3, MARCH 1990

Two stages gain: definitions and notations.

- • m_{μ} multiplication gain from i to j is described by a probability distribution function (pdf) $P_{\mu}(m_{\mu})$ with ij=01,10,12,21
- •m_{ii}-1 secondary carrier multiplication gain from i to j related to primary carrier gain m_{ii}
- $\bullet \Phi_{ii}$ the generating function of the pdf of m_{ii}
- • Ψ_{ii} the generating function of the pdf of m_{ii} -1

Part I: T. Hollenhorst, A theory of multiplication Noise, IEEE Transactions on electron devices Vol. 37. NO. 3. MARCH 1990					
$M_{N,}$ and f_{N} : Gain and noise increment of a of the	N identical stage device	N stages : PMT / APD / I	EMCCD		
$\Phi_N(z)$ Generating function of the N stage device	M _{N,} and f _N : PMT	M _N and f _N : APD	M and f: EMCCD		
$\Phi_{N+1}(z) = \Phi_N \left[\phi_{N+1}(z) \right]$	$M_{01} = \delta$ $M_{10} = 1$	$M_{01} = 1 + \mu$ $M_{10} = 1 + \nu$	$M_{01} = 1$ $M_{10} = 1 + v$		
$\Phi_N(z) = \phi_1 \Big[\phi_2 \Big[\dots \phi_{N-1} \Big[\phi_N(z) \Big] \dots \Big] \Big]$	$f_{01} = \frac{O_{01}}{M_{01}} f_{10} = 0$	$f_{01} = \mu \qquad f_{10} = \nu$	$f_{01} = 0$ $f_{10} = \frac{v(1-v)}{(1+v)^2}$		
Recursion relations for M _N and f _N :	$M_N = M_{01}^N$				
$M_{N+1} = \frac{M_{01}M_N}{1 - (M_N - 1)(M_N - 1)}$	$f_N = f_{01} \left(1 - \frac{1}{M_{01}} \right) \left(1 - \frac{1}{M_N} \right)$	$k = \frac{\alpha}{\beta} < 1$	$\phi_{10} = (1 - v)z + vz^2$		
$f = (M_N^2 - I)(M_{10} - I)$	$\sigma_{01}^2 = \delta$ (Poisson)	$\mu = \beta \Delta x$	Bernoulli trial		
$J_{N+1} = J_{01} + \frac{M_{01}^2 M_N}{M_{01}^2 M_N} [J_{10}(M_N - 1) + J_N]$	$f_{01} = \frac{1}{M} = \frac{1}{\delta}$	$v = \alpha \Delta x$ $k = \frac{v}{2}$			
		$\mu = \mu $			
		$M_N = \frac{(1-k)}{\exp[(k-1)\mu N] - k}$			
$M_{N} = \frac{(M_{01} - M_{10})M_{01}^{N}}{(M_{01} - 1)M_{10}^{N} - (M_{10} - 1)M_{01}^{N}}$		$M = M_{N \to \infty}$			
$f_{N} = A(M_{N} - 1) + B\left(1 - \frac{1}{M_{N}}\right)$					
$A = \frac{f_{01}M_{01}(M_{10} - 1) + f_{10}M_{10}(M_{01} - 1)}{(M_{01} - 1)^2(M_{10} + M_{01})}$	$M_N = \delta^N$	$M = \frac{1-k}{\exp[(k-1)\int \beta(x)dx] - k}$	$M_{N} = (1 + \nu)^{N}$		
$B = \frac{M_{01} \Big[f_{01} \Big(M_{01}^2 - M_{10} \Big) + f_{10} M_{10} \Big(M_{01} - 1 \Big) \Big]}{(M_{01} - 1)^2 (M_{01} - M_{01})}$	$f_N = \frac{1}{2} \left(1 - \frac{1}{2N} \right)$	$f = k(M-1) + (1-k)\left(1 - \frac{1}{2}\right)$	$f_N = \frac{1 - \mu}{1 + \mu} \left[1 - \frac{1}{M} \right]$		
$(M_{01} - 1) (M_{10} + M_{01})$	$\delta - 1 (\delta^{-1})$		$1 + \mu \lfloor M_N \rfloor$		

Do it as an exercise !

Key parameter: spatial resolution or pixelization

From large area detector PMT for Cherenkov detector to pixel array for highly resolved imaging

Stitching

- Cherenkov detector : Large aperture devices
- PET scan ... MaPMT or pixelAPD: Typical pixel size ~2x2mm²
- Imaging camera system : MTF (lp/mm)
 - Typical pixel size (Pitch) ~5-15 μm
 - Cellular phone 2 μm
 - DTI, doping profile, SOI

G-N Lu, A. Tournier, F. Roy, B. Deschamps Sensors 2009, 9, 131-147; doi:10.3390/s90100131

Solid State Devices

20" PMT

Instantes.

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

tutorial : photodetectors **16**

1.4 μm

Part I: key parameter - time stamping, temporal resolution

Time resolution:

- Detection process drift of the charge jitter ...
- Front-end electronics: fast shaper
 - fast and slow shapers can be used (time stamping and energy measurement) ROC ASICs
- CMOS imager CCD are extremely slow (~s-ms) compare to PMT or APD, GAPD and MCP (~ns-ps).
- MCP based devices should have the best timing resolution (10 ps)

18

Part two : Photodetectors

Vacuum devices Solid State devices

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

tutorial : photodetectors 21

Vacuum devices

- Photomultiplier Tubes: PMT
- MultiChannel Plates: MCP-PMT
- Hybrid Photon Detectors: HPD

Can be downloaded on hamamatsu web page

Photomultiplier Tubes

Part II: PMT - Basic

- 1. The photon (ph) produce a photoelectron (pe) (Quantum Eff.)
- 2. The pe is emitted into the vacuum (Quantum Eff.)
- 3. The pe is collected by the first dynode (Coll. Eff)
- 4. The pe is "amplified" by dynodes multiplication stages (M and ENF)
- 5. The secondary charges are collected by the anode
- 6. The anode signal is readout (Equ. Noise Charge ENC)

Part II - PMT – Gain

The Gain M is due to secondary emission.

 δ_i is the secondary emission coefficient of dynode i,

$$=\prod_{i=1}^{n}\delta_{i} \qquad ENF_{1pe} = 1 + \frac{1}{\delta_{1}} + \frac{1}{\delta_{1}\delta_{2}} + \frac{1}{\delta_{1}\delta_{2}\delta_{3}} + \dots + \frac{1}{\delta_{1}\delta_{2}\delta_{3}\dots\delta_{n}}$$

$$\delta_i = a \times V_{\delta}^k$$
$$a = cste$$
$$k = 0.7 - 0.8$$

 $M = \delta_1 \delta_2 \delta_3 \dots \delta_n$

$$M = (a \times V_{\delta}^{k})^{n} = a^{n} \times \left(\frac{V}{n+1}\right)^{k,n} = A \times V^{k,n}$$

$$ENF \approx \frac{\delta}{\delta - 1}$$

The first dynode dominates the ENF Increase δ_1 reduce ENF and increase single photon sensitivity and Peak to Valley Ratio

$$\left(\frac{\sigma}{E}\right)_{1pe} = \sqrt{ENF_{pe} - 1}$$

Transit Time Spread : FWHM of the distrib. of the TT (TTS) or Transit Time jitter

~0.3-1 ns

					Unit : ns
Dynode Type	Rise Time	Fall Time	Pulse Width (FWHM)	Electron Transit Time	TTS
Linear-focused	0.7 to 3	1 to 10	1.3 to 5	16 to 50	0.37 to 1.1
Circular-cage	3.4	10	7	31	3.6
Box-and-grid	to 7	25	13 to 20	57 to 70	Less than 10
Venetian blind	to 7	25	25	60	Less than 10
Fine mesh	2.5 to 2.7	4 to 6	5	15	Less than 0.45
Metal channel	0.65 to 1.5	1 to 3	1.5 to 3	4.7 to 8.8	0.4
Table 4.0. Table all times all another indians (0 in all all a sub-standard line)					

Table 4-3: Typical time characteristics (2-inch dia. photomultiplier tubes)

- Different photocathode sensitivities
 - GEN II alkali metals (Sb K Rb Cs)
 - GEN III III-V compound semiconductors (GaAsP GaAs InGaAs)

QE 20 to 30% @ 400 nm

CF 70 to 90 %

Part II: PMT – Multi-Anodes – Segmented PMT

Flat Panel H9500 Hamamatsu

- 16x16 (256) anodes
- Pixel size 2.8x2.8 mm²
- Pitch : 3.04 mm
- Effective area = 49x49 mm square
- FF = 89%
- G = 1.5 10⁶
- 12 Dynodes
- PC: Bialkali 24% @ 420 nm
- Transit Time 6 ns
- Transit Time Spread = 0.4 ns
- Rise Time = 0.8 ns
- Xtalk = 5%
- Anode Uniformity 1:4

INCREASE FILL FACTOR

Flat Panel is MaPMT

Planacon XP85012 Photonis

- 8x8 (64) anodes
- Pixel size 5.9x5.9 mm²
- Pitch : 6.05 mm
- Effective area = 49x49 mm square
- FF = 80%
- G = 6. 10⁶
- 2 MCP chevron 25 micron pore 40:1 L:D ratio
- PC: Bialkali 24% @ 420 nm
- Pulse Width = 1.8 ns
- Rise Time = 0.6 ns

XP85012

PLANACON

Medical applications

H9500

52 mm Square

Planacon is MCP-PMT (see later)

Part II: MCP-PMT

Multichannel plates MCP-PMT

Phosphor

Output Window Straight fiber optic Twisted fiber optic

P22

P24

P43 P46 P47

Glass

Image Intensifier: Night Vision

	-	*
Input Window Quartz Glass Fiber Optic MgF2	Photocathode Solar blind S20 (UV) S20 Broadband Hot S20 Supergen (=Super S25)	Active Ø (mm) 18 25 40

*	1.0				
None	L:D				
Single	50:1				
Double	2x50:1				
Double+	50:1+90:1				

Gating Sublayer

None Slow Fast Ultra

Power Supply

Standard fixed gain EGAC (ext gain contr) Autogating Autogating EGAC + ext sync EGAC with gate-unit

INDUSTRY & SCIENCE

With USB connector

ICU ICMOS Photonis

Part II: PMT - MCP - Basic

- 1. The pe is emitted and accelerated to the MCP V~300V
- 2. MCP multiplies the pe $(V \sim 3000V G \sim 10^4)^{-1}$
- 3. Readout of the secondary electrons
 - Phosphor + eye
 - Phosphor + CCD = ICCD
 - Phosphor + CMOS = ICMOS
 - Multi Anodes + ROC = ebMCP-CMOS
 - X Delay Line or X strip = H33D

FF~<80%

Picture of the MCP's pores

GAIN vs V

Gain:

- Single stage: G ~10³ to 10⁴
- Dual MCP[:] G ~10⁶ to 10⁷

Very Good Temporal resolution: ultra-fast devices

- Low Transient Time ~1 ns
- Transient Time Spread ~ 50 ps
- Sub-ns rise and fall time
- Ex: 30 ps resolution (Hamamatsu R3809)
- Gating capability (Mesh 250 ps 10 ns D=18mm)

Photocathodes:

- Bialkali
- Multi alkali (Photonis/Photek/Hamamatsu)
- GaAsP or GaAs (Hamamatsu ...)
- Cs-Te for UV

Phosphor screen:

P24, P46, P47 (fast µs) ;P43 (slow 1ms);

Sensitive to single photon

Part II – MPCP-PMT – Trends

Image Intensifiers:

- Improve PDE
- Improve readout with CMOS: ICCD→ICMOS
- Power consumption, functionalities, integration for night vision ...
- Aging compactness
- Fast Gating

ebMCP-CMOS

Improve time resolution !

Time of Flight System: 10 ps Fermi Lab & Photek (see below).

FLIM system: 25 ps CERN Nino chip & Photek

J.S. Lapington, T. Conneely, Nucl. Instr. and Meth. A (2011), doi:10.1016/j.nima.2010.11.175

Photek 240

<u>Ronzhin et al. NIM A623 (2010) 931:</u> <u>Development of a 10 ps level time of flight system</u> <u>in the Fermilab Test Beam Facility</u>

Hybrid Photon Detector

Part II: HPD - Basic

- 1. Photocathode (Alkali / GaAs)
- 2. High Electric field (HV 2 to 20 kV)
- 3. Gain in one step by energy dissipation of keV pe's in solid-state detector; ENF ~1
- 4. Secondary carriers for multiplication are produced and directly readout by
 - Si-Anode+ROC = HPD / ISPA Tube ...
 - APD = HAPD
 - Back thinned CCD = EBCCD
 - Back thinned CMOS = EBCMOS

Large Area HPD / Small number of pixels

Imaging / Megapixel device

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

- Gain: Energy dissipation through ionization and phonons → e-h
- To generate 1 e-h pair in Si: W_{si}=3.6 eV

 $e \times$

Gain

- V_d is the threshold voltage (entrance dead layer !!!!)
- $\Delta V = 2$ to 20 kV depends on
 - dead layer thickness
 - readout noise
 - electron charge collection efficiency
 - DC required
 - cathode gap length
- Single-photon sensitive device
- Time resolution depends on:
 - Charge collection
 - Readout sequence of the chip
 - Number of channels to readout 64 to 10⁶

Part II: Hybrid devices - ebCCD

Megapixel ebCCD single photon sensitive

L. Benussi et al. NIMA 442 (2000) 154

Novel large aperture ebCCD (Hamamatsu)

Table 1

Device specifications.

Parameters		Description/value	Unit
Spectral response		300-650	nm
Photocathode	Material Effective area	Bi-alkali 46×36	- mm
Window material		Fiber optic plate (FOP)	-
Magnification		1/5	-
Target	Type Effective area Number of pixels Pixel size	FT-CCD 9.0(H) × 6.7 (V) 640(H) × 480(V) 14 × 14	- mm - μm
Frame rate		30	Hz

Fig. 1. Structure of the EBCCD.

A. Suzuki et al. NIMA 628 (2011) 260

X coordinate [pixel]

Part II: Hybrid devices – HAPD

Large aperture HAPD for next generation Cherenkov detector

Status and Perspectives of vacuum-based photon detectors T. lijima NIM A 639 (2011) 137

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

Low DC HAPD under low temperature:

- Dark matter search and double beta decay.
- Special bialkali photocathode under extremely low temperature (Xenon -108°C)
- ebGain = 1000
- APD Gain ~100
- Iow radioactive materials : Quartz < 1 mBq</p>
- Single photon sensitivity

Arisaka group UCLA

A. Fukasawa et al. NIM A623 (2010) 270

- the PN junction with reverse bias: PhotoDiode
- ✓ Si bulk => N layer (Phosphor doped);
- ✓ P layer on top (Boron doped)
- ✓ Depleted zone (increased by V_{inv})
- ✓ If e/h created in the depleted zone
 - ✓ e- → in conduction Band and drift to N layer
 - ✓ h → in valence Band drift to P layer
- \checkmark The current is read out with no internal gain.
- <u>The PIN Diode:</u>

300 μm of intrinsic (high-purity) layer sandwiched between n+ (P) and p+ (B)

This reduces capacitance (reduce noise) sensitive to red

Part II: Solid State Devices – Avalanche Photo Diode - Basic

Basic:

- •High electric Field : 10⁵ V/cm
- Electrons and holes are accelerated
- •Multiplication by Impact ionisation for e- and holes !
- • α ionisation coefficient for electrons • β ionisation coefficient for holes ENF minimized if α > β or α < β ie
- k-factor = $\beta/\alpha \ll 1$

Musienko Tutorial NDIP08

Another way to amplify photoelectric signal: applying high electric field in uniform p-n junction may cause an avalanche multiplication of electrons created by absorbed light.

Silicon is a good material for APD construction: high sensitivity in visible and UV range, significant difference between ionization coefficients for electrons

and holes - smaller positive feedback and smaller multiplication noise

Ionization coefficients as a function of electric field in silicon

Features:

- •Gain = 50 to 200
- •QE=80%
- •Operating Voltage >300 V
- Faster than PD ~ns
- •ENF = 2
- •Sensitivity of the Gain to •Voltage

 - Temperature

hamamatsu

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

Part II: Solid State Devices - SiPM

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

Size: ~1mm square up to 1 cm square (RMD SSPM)
of cells: 100 to thousands

•PDE is reduced due to Quenching resistor

• Photon counting M. Dziewiecki et al. PD09-016

Fig. 6. Silicon photomultiplier (Hamamatsu MPPC) with a close-up of one of the cells. Hamamatsu MPPC

PD09-019

G ~ 2.10⁶ @ ∆V~ 6 V

- Photon Detection Efficiency
 - PDE = QE .FF .GE
 - GE = Geiger efficiency
 - FF = Geometrical efficiency

S. Korpar NIMA 639 (2011) 88

Part II: Solid State Device - SiPM – main features

- Photon counting
- **Optical Cross talk; False counting**
- Dynamic range is limited by the # of cells:

Geiger mode gives counting error if > 1 ph/cell !

- Dark count rate 0.1 to 1MHz/mm² @ 25°C
- Radiation hardness issue
- Timing resolution 100 ps

Cross Talk

n

•Timing

Hamamatsu MPPC Pitch 2,54mm

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

tutorial : photodetectors 50

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

V(t)

Part II: Solid State Detector - SiPM – Trends

From passive quenching to active quenching and SPAD array in CMOS technology

- Two complementary TDCs
- Integrated acquisition controller
- JTAG for configuration & test
- Two serial data outputs
- 48 bond wires

PHILIPS

PET applications

DCR (kcps)

100

the first the

- 2x2 Array of 3x3x15mm³ LYSO
- 1:1 coupling using MeltMount
- Illuminated by ²²Na source
- Corrected only for saturation
- dE/E = 11% (combined)

Thomas Frach, Member, IEEE, Gordian Prescher, Carsten Degenhardt, Rik de Gruyter, Anja Schmitz, and Rob Ballizany

Optical Crosstalk (%)

Thomas Frach, Gordian Prescher, Carsten Degenhardt, Andreas Thon, Ben Zwaans

30 20 10

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

Part II: Solid State – SiPM MPI

MPI Munich developments on SiPM with Bulk integrated quench resistors: J. Ninkovic NIMA 628 (2011) 407

Pros: •Low Cost •Rad. Hard. No Si-SiO₂ depl. •PDE is increase (no Poly)

Cons: •Longer Recovery time 1.5 μs •Cooling mandatory for this prototype

DC 10 MH/mm² V=4V @ T=20°C

A new name © SiPMI Silicon Multipixel light detector

Bulk Doping Concentration mean=2.8 10⁺¹² cm

Still there is a significant room for further improvements:

- ✓ HIGHER PHOTON DETECTION EFFICIENCY
- ✓ RADIATION TOLERANCE (HEP)
- ✓ REDUCE COST FOR LARGE DETECTION SURFACE EXPERIMENT
- ✓ DARK COUNT RATE✓ ...

Part II : Solid State Devices - CCD

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

tutorial : photodetectors **55**

Part II: Solid State Devices – CMOS imager

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

Part II: Solide State devices – backthinned CMOS

- CMOS pixels array with 100% FF
- Backside thinning
- post processing Boron implant
- Laser annealing

boundaries

< 100 nm dead layer</p>

Trenches along pixel

zero cross-talk

Fillfactory

eesa____

imec

imec

eesa_

Fillfactory

© imec 2008 29

3D detector systems

CYPRESS

Part II: Solid State Devices – CMOS – A DAQ system on chip

Figure 6. SEM cross-section of Fairchild Imaging 6.5 µm 4T pixel

The future of the photodetectors

3D electronics: Through Silicon Via, Wafer Level Package

Wafer stacks with TSV open a new area for photon detectors:

- Increase FF
- •Large area
- •Fast (1 TDC/pixel)
- •Resolution (pixel)
- •Smart Trigger per pixel
- •Dynamic (buffer memory)
- •Compact

• . . .

- •Embedded
- •Sparsification
- •Data rate 100 Gbit.s in //

Fig. 11. 3D circuit diagram and 3D layout of pixel cell.

D. Bortoletto Solid state detectors NIMA 623 (2010) 35

P. De Moor IMEC

Conclusions & outlook II

- 3D integration technology will allow manufacturing of advanced detection systems:
 - complex imaging detectors using high density 3D interconnects (≥1 per pixel) between different intelligent layers:

Thank you for your attention

BACKUP SLIDES

- Photocathode Dark Noise
 - Dark current (nA)
 - Dark count (Hz/mm²) (photon counting)

Main effects:

- Leakage current
- Thermionic pe emission (cooling)
- Field effect (HPD)
- Ion feedback: ionization current from residual gases
 An atom is ionized and accelerated : photocathode bombardment
 - aging issue (thin film protection can be used for AsGa Intensifier)

EBCMOS

EMCCD

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

tutorial : photodetectors 65

Part II: PMT - The Pros and Cons

Pros:

- High sensitivity : single photo-electron resolution, ENF~1.3
- High counting capability
- Larger sensitive surface than Solid State Devices: Cherenkov detectors
- Good time resolution < 1ns
- Cons:
 - Sensitivity to magnetic field (HEP experiments)
 - Low granularity
 - "Low" QE
 - Need of High Voltage

Pros:

- Sensitive to Single Photon
- Very Fast (Time Of Flight)
- Gating is possible on the MCP (or modulation 300V)
- Good spatial resolution in case of ICCD
- <u>Cons:</u>
 - Limited life time ion feedback
 - Limited rate capability
 - HV

- Detect Single Photon with low Dark Count Rate
- Localize the Photon on the sensor
- Localize the Photon Source
- Quantify the Source intensity, count photons
- Track the photon source
- Track all photon sources at less than 1 ms over Megapixels array

Single-photon sensitive fast ebCMOS camera system for multiple-target tracking of single fluorophores : application to nano-biophotonics.

<u>Thomas Cajgfinger</u>, Eric Chabanat, Agnes Dominjon, Quang T. Doan, Cyrille Guerin, Julien Houles, Remi Barbier.

IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, 4 rue E. Fermi – 69622 Villeurbanne cedex, France www.ipnl.in2p3.fr/ebcmos/

27/01/2011

Thomas Cajgfinger IS&T/SPIE 2011 San Francisco Paper 7875-24

A new camera system : what for ?

- Fluorescence microscopy : 2D imaging system
 - Population of <u>nanometer</u> scale single emitters:
 - Static or dynamic fluorescent beads (protein, Quantum Dots...)
 - Phototoxicity->low signal(~photons/ms)
 - Below objective diffraction limit resolution
- Wish List of imaging sensors:
 - 10 nm resolution on position of targets
 (=µm on sensor)
 - Fast frame rate ~ kHz
 - Photon counting ~ 1 10
 - Multi target tracking ~ 1000

Does that type of camera exist?

27/01/2011

Thomas Cajgfinger IS&T/SPIE 2011 San Francisco Paper 7875-24

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

tutorial : photodetectors **70**

What is an ebCMOS camera ?

Single photon sensitive detector:

<u>Hybrid detector</u>: electro bombarded CMOS
 CMOS + photocathode + vacuum tube
 Gain = accelerated e- by electric field in vacuum tube
 Point spread function(psf) :

- ≻Tube: radial velocity of emitted e-
- ≻CMOS : thermal diffusion

ebCMOS detector

ebCMOS DAQ

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

Quick overview of the ebCMOS camera system prototype

CMOS

Photo Cathode

Home made DAQ

> Back side
> Back thinned
> Passivation
(dead layer) <80nm
> 400x400 pixels X2
> simple 3T pixel
10 µm pitch
> 40 MHz clock

Gain at 2.5 kV : <u>300</u>eQuantum Efficiency
(530nm) : 25% max
Cathode S20 :
dark count : 15Hz/mm²
(6.25 10⁻⁶ evt/pix/frame)
Cathode S25:
dark count : 400Hz/mm²
(1.66 10⁻⁴ evt/pix/frame)

 Continuous acquisition
 Frame rates: 125, 250 & <u>500 fps</u>
 FPGA DDR custom board
 Ethernet 1 Gb/s
 Next 10 Gb/s

Fast frame rate

27/01/2011

Single photon sensitivity

High data throughput

Thomas Cajgfinger IS&T/SPIE 2011 San

Rémi Barbier, NDIP 2011, Lyon, France, revrécisco Paper 7875-24
Building blocks of nano-emitter tracking

- Secondary e- diffusion & charge sharing
 - Impact pattern
 - Photo-electron reconstruction by clustering
- Computation of centre of gravity (COG) -> intra pixel localization
- Natural CMOS noise filtering
- Counting possibilities with gain linearity

27/01/2011 Thomas Cajgfinger IS&T/SPIE 2011 San Francisco Paper 7875-24

Using building blocks to follow a target

Thomas Cajgfinger IS&T/SPIE 2011 San Francisco Paper 7875-24

27/01/201

ebCMOS resolution in the noise free case

27/01/2011

Thomas Cajgfinger IS&T/SPIE 2011 San

Rémi Barbier, NDIP 2011, Lyon, France, Jancisco Paper 7875-24

76

Finding & locating targets

- Setup at Nanoptec Center in Lyon:
 - Spin-coated QDs
 - Wide field microscopy setup
 - ➤Magnification: 100X

- Emission wavelength: 605 nm (Invitrogen)
- Excitation wavelength: 473 nmQD size: 10-20 nm

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

<u>Proof of concept</u> and <u>in situ testing</u> of the tracking of a large number of <u>nanoscale</u> photoemitters on a <u>large field of view</u> with <u>micrometric</u> resolution and <u>single photon</u> sensitivity at <u>millisecond time scale</u> using an ebCMOS camera and <u>home made</u> DAQ & HCI system.

Camera system improvements:

- ✓ Larger and faster CMOS
- ✓ Target tracking with parallel processing : FPGA & GPU computing
- ✓ Real time implementation

Applications:

Physical properties of nano-objects: mean square displacement, viscosity...
Photo Activated Localization Microscopy (PALM)

27/01/2011

Thomas Cajgfinger IS&T/SPIE 2011 San Francisco Paper 7875-24

81

Localisation accuracy on spot position

Rémi Barbier, NDIP 2011, Lyon, France, July 4-8

- ✓ Many Sizes are available
- Many wavelength sensitivity
- ✓ APD Arrays
- ✓ APD in vacuum tubes: HAPD
- ✓ Compactness for full design of PET system (PET...)
- ✓ Need ASICs temperature regulation

Position sensitive APD 8x8mm² Fig. 2. A photograph of a 45 cm² APD. Large APD 45 cm²

M. McClish et al. NIM A567 (2006) 36

CORS Synthesis on pixels

	techno	fill factor	QE	charge to voltage gain	noise	linearity	lag	charge capacity	anti bloom	snapshot CDS	snapshot IWR
3T	+	+	-	-	-	-	+	II	yes	no	no
3T pinned	=	+	+	+	+	+	+	I	no	no	no
5 T pinned	=	=	+	+	+	+	-	-	yes	no	yes
7 T pinned	=		+	+	+	+	-	-	yes	yes	yes
6 T photogate	+	-	1	+	+	+	-	+	yes	no	yes
6T photogat thinned	-	-	++	+	+	+	-	+	yes	no	yes
hybrid		++	++	+	+	+	+	+	yes	yes	yes

Note : +, =, and – are relatives in one column

Workshop Astrophysics Detectors - Nice 17-20 nov 2008 - A. Bardoux

47

Preamble

- The performances of a photodetector should be systematically discussed with the background question: what did I want to see ?
- First: fill your checklist and choose your hierarchy of priorities:
 - Counting ? Linearity ? Single Photon sensitivity ?
 - Localize ? Imaging ? Large Field of View ? Detection surface ?
 - dynamic range ?
 - time stamping ? dead time ?
 - ...
- This is why presenting a tutorial on many different photodetector performances is in some sense bizarre... but ... not completely stupid ...
- Sometimes different possibilities of detectors are offered and chose the "best" for the application is not obvious.
- The detection technologies (Semiconductor mainly) evolve rapidly. It could happen that two technologies merge to open new application fields.