

XEMIS: A liquid xenon detector for medical imaging

Lucia GALLEGO 01 - 07 - 2014

Outline

Introduction

- The XEMIS (Xenon Medical Imaging System) project
- 3γ Imaging technique
- XEMIS1: R&D
- XEMIS2: Small animal imaging
- Conclusions and Perspectives

Functional Medical Imaging

Functional imaging:

Physiological information

Hybrid Information

PET / TOF PET

PET / TOF PET

Lucia GALLEGO

XEMIS Project

XEMIS: XEnon Medical Imaging System

• Propose a new functional nuclear imaging technique based on the detection in coincidence of **3** gamma rays \rightarrow **3** γ **Imaging**

- Direct 3D location of the radioactive source
- Administered dose reduction
- Shorter scan times

Development of a new detector framework based on a liquid xenon Compton camera

XEMIS Project

XEMIS: XEnon Medical Imaging System

• Propose a new functional nuclear imaging technique based on the detection in coincidence of **3** gamma rays \rightarrow **3** γ **Imaging**

- Direct 3D location of the radioactive source
- Administered dose reduction
- Shorter scan times

Development of a new detector framework based on a liquid xenon Compton camera

- Main phases of the project:
 - 1. Proof of the feasibility of the 3γ imaging technique (XEMIS1) \checkmark
 - 2. Study of its capability for small animal imaging (XEMIS2) •••
 - 3. Application in human body imaging

Outline

Introduction

- The XEMIS project

3γ Imaging technique

- XEMIS1: R&D
- XEMIS2: Small animal imaging
- Conclusions and Perspectives

Principle of the 3γ Imaging Technique

• Requires the use of a specific radioisotope, which emits a $\beta^+ + \gamma$ ray in quasi-coincidence:

The ⁴⁴Sc is a good candidate

⁴⁴Sc : β^+ (Emax = 1.474 MeV) $\gamma(E_0 = 1.157 \text{ MeV})$ (T_{1/2} = 4 h)

Principle of the 3γ Imaging Technique

• Requires the use of a specific radioisotope, which emits a $\beta^+ + \gamma$ ray in quasi-coincidence:

Why liquid xenon?

	Neon	Argon	Krypton	Xenon
Atomic number	10	18	36	54
Density (g/cc)	1.2	1.4	2.4	3
Boiling Point (K)	27.1	87.3	119.8	165.0
Light yield (UV/MeV) $(\vec{E} = 0)$	30000	40000	25000	42000
Ionization yield (/MeV) ($\vec{E} = \infty$)	46000	42000	49000	64000
Decay Time (ns)	10, 15400	6.3, 1500	7.0, 85	<mark>2.2</mark> , 27 , 45
Wavelength (ns)	85	128	150	175

LXe provides:

J.A. Nikkel et al. 2012 JINST

- Simultaneous production of a scintillation and an ionization signal
- Simpler cryogenics
- Fast decay, high scintillation light yield and high ionization yield

Why liquid xenon?

	Neon	Argon	Krypton	Xenon
Atomic number	10	18	36	54
Density (g/cc)	1.2	1.4	2.4	3
Boiling Point (K)	27.1	87.3	119.8	165.0
Light yield (UV/MeV) $(\vec{E} = 0)$	30000	40000	25000	42000
Ionization yield (/MeV) ($\vec{E} = \infty$)	46000	42000	49000	64000
Decay Time (ns)	10, 15400	6.3, 1500	7.0, 85	<mark>2.2</mark> , 27 , 45
Wavelength (ns)	85	128	150	175

LXe provides:

J.A. Nikkel et al. 2012 JINST

- Simultaneous production of a scintillation and an ionization signal
- Simpler cryogenics
- Fast decay, high scintillation light yield and high ionization yield

Lucia GALLEGO

Photon interaction with LXe produces

†z

Lucia GALLEGO

NDIP14

Outline

- Introduction
 - The XEMIS project
- 3γ Imaging technique

XEMIS1: R&D

- XEMIS2: Small animal imaging
- Conclusions and Perspectives

XEMIS1 Facility

30 kg LXe

Experimental study of the feasibility of the 3γ imaging technique and the use of liquid xenon as a perfect candidate for gamma detection.

Lucia GALLEGO

XEMIS1 Facility

30 kg LXe

Experimental study of the feasibility of the 3y imaging technique and the use of liquid xenon as a perfect candidate for gamma detection.

Lucia GALLEGO

rificatior

XEMIS1 TPC

64 pixels anode 3.5 x 3.5 mm² pixel

Readout

511 keV Calibration

²²Na source (20 kBq) (E_{max}β⁺= 545 keV, E_y= 1.257 MeV)

Depth of Interaction (@511 keV)

Energy Fluctuations

Charge density fluctuations caused by changes in the production of δ electrons affects the energy resolution \rightarrow Thomas model.

Thomas et al. Model 1988 Phys. Rev. A

NDIP14

Energy Resolution (@511 keV)

Lucia GALLEGO

NDIP14

Cone LOR intersection

Cone LOR intersection

Resolution along the LOR

Lucia GALLEGO

Outline

- Introduction
 - The XEMIS project
- 3γ Imaging technique
- XEMIS1: R&D

XEMIS2: Small animal imaging

Conclusions and Perspectives

XEMIS2 Prototype

Full liquid xenon cylindrical camera dedicated to small animal imaging

NDIP14

Lucia GALLEGO

XEMIS2 Cryostat

XEMIS1

Output signal: continuous sampling 12.5 MHz \rightarrow 64 channels x 102.2 μ s \rightarrow 2Gb/hour

XEMIS2 Design

Sensitivity $\approx 5\%$ \longrightarrow Very high sensitivity

OpenGATE collaboration: *http://www.opengatecollaboration.org/*

Lucia GALLEGO

Image Reconstruction

Image Reconstruction: 3γ + reconstruction algorithm

GATE simulation:

- ⁴⁴Sc source located at the center of the camera
- Low activity: 20 kBq inside the phantom
- Acquisition time 20 minutes

Simulated Image

Reconstructed Image

Conclusion and Perspectives

XEMIS1

"Technical" proof of the feasibility of the 3γ imaging technique

Very good results for the ionization signal in liquid xenon have been obtained with XEMIS1.

- A complete simulation of XEMIS2 using Geant4 shows very promising results for the sensitivity, energy and spatial resolutions.
- Simulated tomographic reconstructed images reveal the possibility of imaging a whole animal in a short time with a very low injected activity.
- Design phase is already finished and the R&D for the upgrade of XEMIS2 is starting → installation at Nantes Hospital in 2015.

Thank you for your attention

Acknowledges:

Why Liquid Xenon?

Attractive properties as detector medium:

- **High density**: 3 g/cm³ and high **atomic number**: Z = 54
- \rightarrow high stopping power for 1 MeV γ -rays \rightarrow compact detector
- High scintillation yield: 42 000 UV photons/MeV at 175 nm
- High ionization yield: 64 000 electron-ion pairs/MeV (W_{LXe} = 15.6 eV)
- High electron drift velocity (v = 2 mm/µs) and low diffusion → excellent spatial resolution
- Liquid state → large monolithic detector at reasonable cost
- **Boiling point**: 165 K \rightarrow warmer that other liquid materials as N₂ or Ar
- → "easy" cryogenics
- Event localization in 3D

 time projection chamber (TPC)

Why Liquid Xenon?

Purity of the Liquid Xenon

Electronegative impurities absorbed electrons drifting in LXe

W.R. Leo. Tehcniques for Nuclear and Particle Physics Experiments. Springer-Verlag

