

NDIP

7th International Conference on New Developments In Photodetection

Tours, France, June 30th to July 4th 2014

First years of running for the LHCb calorimeter system

NDIP 2014 June 30th – July 4th, 2014

Frédéric Machefert, Laboratoire de l'Accélérateur Linéaire On behalf of the LHCb collaboration

The LHCb detector

- Precision measurements in the beauty and charm quark sectors
 - Study of CP violation, rare decays
 - discovery of new states, indirect search for new physics beyond the standard model
- LHCb is a single-arm spectrometer
 - 4% of the solid angle
 - 30% of the heavy quarks cross-section production at LHC

The LHCb detector

NDIP

The LHCb detector

Tuesday July 1st, 2014

Frédéric Machefert - NDIP 2014 - Tours

NDIP

The calorimeter system

Tuesday July 1st, 2014

The calorimeter system: SPD, PS

Tuesday July 1st, 2014

Frédéric Machefert - NDIP 2014 - Tours

NDIP

The calorimeter system: ECAL, HCAL

Tuesday July 1st, 2014

Frédéric Machefert - NDIP 2014 - Tours

NDIP

LHCb trigger

- L0 trigger
 - first level trigger of LHCb
 - 4µs latency at 40MHz
 - Apply selection cuts
 - Et(γ/e) > 2.7 GeV
 - Et(h) > 3.6 GeV
 - Pt(μ) > 1.4 GeV
- HLT : software trigger
 - 300k tasks in parallel
 - More than 1500 nodes
- Storage : 5kHz
- Combined efficiency
 - 90% for muon channels
 - 30% for multi-hadronic final states

Tuesday July 1st, 2014

LHCb operation

LHCb Integrated Luminosity

4 times more collisions per crossing than in the design

Tuesday July 1st, 2014

Calorimeter system geometry

02/06/2014

- 40MHz trigger on energetic e, π^0 , γ , h
- Distance to IP ~13m
- Solid angle coverage 300 x 250mrad
- Four sub-detectors:
 - SPD, PS, ECAL, HCAL
- Independently retractable halves
- Granularity :
 - SPD, PS, ECAL : 6016 cells with 3 sizes
 - 4x4, 6x6, 12x12 cm^2 (2 zones for HCAL)

Calorimeter system

- 40MHz trigger on energetic e π^0 , γ , h
- Distance to IP ~13m
- Solid angle coverage 300x250mrad
- Four sub-detectors: SPD, PRS, ECAL, HCAL
- Independently retractable halfes
- Granularity :
 - PRS, ECAL, HCAL : 6016 cells with 3 sizeS
 - 4x4, 6x6, 12x12 cm²
- Detection
 - Sandwich of scintillator/lead (iron for HCAL)
 - WLS are used to collect the light and to propagate it to photomultipliers
 - MAPMT for the SPD/PS

Tuesday July 1st, 2014

Scintillating Pad Detector - Preshower

- Scintillator pads
 - 2.5 Xº lead
 - 15mm thick
 - Light collected by WLS
- Signal read by 64 channel MAPMT
- Average light yield
 - 20 pe/mip
- SPD
 - 1 bit
- PS
 - 10 bits
 - Dynamic range 0 100mip

3312 shashlik modules with 25 X₀ Pb

ECAL

- Electromagnetic calorimeter
 - 66 layers
 - 2mm Pb, 4mm scintillator
 - Light collected by WLS
 - Moliere radius ~ 3.5cm
 - Longitudinal size
 - 25 X^o
 - 1.1 λ_ι
 - Average light yield :
 - 3000 pe/GeV
 - Dynamic range ~12 GeV (Et)
 - Energy resolution (test beam)

$$\frac{\sigma(E)}{E} = \frac{10\%}{\sqrt{E}} \oplus 0.9\%$$

Tuesday July 1st, 2014

HCAL

6mm master, 4mm spacer / 3mm scintillator

- Hadronic calorimeter
 - 26x2 modules
 - Interleaved scintillator and iron plates
 - Parallel to the beam axis
 - Volume ratio
 - Fe:Sc = 5.58:1
 - Longitudinal size
 - 5.6 λ_{I}
 - Average light yield ~ 105pe/GeV
 - Dynamic range ~15 / 30 GeV
 - Energy resolution (test beam) $\frac{\sigma(E)}{E} = \frac{(69 \pm 5)\%}{\sqrt{E}} \oplus (0 \pm 2)\%$

Tuesday July 1st, 2014

Calorimeter particle identification

- PS / SPD for L0 electron/photon trigger
 - Electron/photon separation from SPD
 - Photon/mip separation PS
 - Charge multiplicity given by the SPD

SPD/PS/ECAL/HCAL in coincidence

- ECAL
 - Et of electrons, photons, π^0 for L0 trigger
 - Offline reconstruction of π^0 and photons
 - Particle identification

- HCAL
 - Et of hadrons for L0,
 ∑Et for L0 trigger

(~ 500 MHz out of the 1MHz bandwidth of the L0)

Calibration : SPD

- SPD (LHCb-PUB-2011-24)
 - Threshold set at 0.5 mip
 - Binary detector
 - No straight mip calibration
 - Tracks are extrapolated to the SPD
 - Collect data at different thresholds
 - Get mip efficiency by comparing with theoretical value

Precision on the mip position better than 5%

Calibration : Preshower

- Preshower
 - Mip signal set at ~10 ADC counts (~1mip)
 - Use extrapolation of the tracks to the PS
 - Mip signal is fitted (Landau
 S Gauss for statistical resolution) and fixed to a given number of photoelectrons
 - 5% precision level

Calibration : ECAL

- Fine calibration using reconstructed π^0
 - Iterative procedure based on the π^0 mass fit
 - Find the calibration coeff that moves the π^0 mass close to the theoretical value
 - $\lambda = m_{th}/m_{rec} \rightarrow$ one coefficient per cell (more than 6000 cells)
- ~1% precision reached

Calibration : ECAL

- ECAL calibration with electrons
 - Comparison of the electron momentum from the tracking with its energy measured in the ECAL and PS (electrons from conversions selected with RICH PID)
 - Also used to monitor the ageing and applying trend corrections every 40pb⁻¹

Calibration : HCAL

- Cs¹³⁷ source
 - 1 source per half (10mCi)
 - Driven by an hydraulic system
 - Each source travels at 20-40cm/s through 26 modules
 - Dedicated integrators measure the anode current every 5ms
 - Absolute normalisation ~10%
 - Cell to cell calibration ~4%
 - Done during technical stops
- LED system
 - Control HCAL response
 - During data taking

Detector ageing

- Combination of several effects
 - Scintillator ageing due to radiations (~0.25Mrad/y)
 - Plastic tiles are less transparents
 - Proportional to the particle flux
 - PMT ageing as a function of the integrated current
 - Depends on cell size and position

Towards an automatic calibration

- Plan is to have a fully automatic calibration for run 2
 - Based on LED and RAW occupancy

OCC = Nentries(adc_reading > threshold) / Nentries

Precision reached with 1 hour data taking

- Promising method : reach 1% precision
 - Test on 2012 data sample for PS, ECAL and HCAL
 - Adjust PMT gain for each fill
 - Stable trigger

Tuesday July 1st, 2014

Electron identification

- Likelihood • difference for the signal (electron) and background hypothesis
 - Based on data distributions
 - Signal : electrons from conversions
 - Backgrounds: hadrons from $D_0 \rightarrow K\pi$

20

40

Electron efficiency(%)

100

95

90

85

80

75

70

65

60 L

π^0 reconstruction

- Low energy pions: resolved as a photon pair σ ~8 MeV
- Above 2.5 GeV (Pt), reconstructed as merged photons

Photons that cannot be resolved as a pair of clusters within ECAL granularity

Resolved pair of well separated photons

Radiative decays

Radiative b \rightarrow s γ FCNC decay, penguin diagram:

- Important candidate to identify new physics at LHC (BR measurement)
- Asymmetry give a direct constraint on the CP violation
 - BR predictions suffer from high uncertainties (hadronic form factor)

- LHCb measures precisely ratio of BR and asymetries
 - 1fb-1 [NP B 867(2012)1]
 - $N(B^{0} \rightarrow K^{*}\gamma) = 5279 \pm 93$; $N(B_{s} \rightarrow \phi\gamma) = 691 \pm 36 \rightarrow BR(Bs \rightarrow \phi\gamma) = (3.5 \pm 0.4) \times 10^{-5}$ • $A_{CP}(B^{0} \rightarrow K^{*}\gamma) = (0.8 \pm 1.7 \pm 0.9)\%$ [Th: (-0.61 ± 0.43)%]
 - -World best measurement

Tuesday July 1st, 2014

 γ ,g,Z⁰

W

LHCb Upgrade

- The sub-detectors should be able to sustain 2x10³³cm⁻²s⁻¹ at 14 TeV
- Full software trigger
 - The calorimeter electronics will send data to a large PC farm @ 40MHz
 - Reduction of the gain of the PMT to keep them alive (compensated in the FEB)
- LHCb upgrade PID TDR: CERN/LHCC 2013-022 Tuesday July 1st, 2014 Frédéric Machefert - NDIP 2014 - Tours

26

Conclusion

- The LHCb calorimeters are running smoothly
 - O(10-3) dead channels
- Good performances
 - Key role on the trigger :
 - Hadrons, electrons, photons channels
 - Important measurements
 - b \rightarrow s γ decay type, γ polarisation
 - $B_0 \rightarrow K^* \gamma, B_s \rightarrow \phi \gamma$
 - χ_c states production at LHC ($\chi_c \rightarrow J/\psi \gamma$)
- Significant ageing effects (PMT, scintillator) \rightarrow expected
 - Automation of PMT HV adjustment procedure
- Calorimeter part of the LHCb upgrade program (2019)

Thank You !

Tuesday July 1st, 2014

HCAL ageing effect

- Degradation of a significant
 number of HCAL PMT
 - ~ 15% (only affect the HCAL)
- Three types of problems :
 - Significant rate effect
 - up to +5 ... +30 %
 - Dark current appears
 - Degradation of the gain
- The effects are correlated
- No correlation with the occupancy

Readout of the (MA)PMT

Tuesday July 1st, 2014

ECAL ageing

HCAL ageing

137Cs source

- Allow to separate the light yield degradation from the PMT gain loss
- Radiation damage of tiles and fibers

The hadronic shower maximum lays ~ within the tile row 0; the dose in the row 5 is much less. Radiation damage of scintillator tiles and fibers can therefore manifest itself as a decrease of relative response of upstream rows (0, 1) with respect to row 5.

LHCO

