First years of running for the LHCb calorimeter system

NDIP 2014
June 30th – July 4th, 2014

Frédéric Machefert, Laboratoire de l'Accélérateur Linéaire
On behalf of the LHCb collaboration
The LHCb detector

- Precision measurements in the beauty and charm quark sectors
 - Study of CP violation, rare decays
 - discovery of new states, indirect search for new physics beyond the standard model
- LHCb is a single-arm spectrometer
 - 4% of the solid angle
 - 30% of the heavy quarks cross-section production at LHC
The LHCb detector
The LHCb detector

[The LHCb Detector at the LHC, JINST 3 (2008) S08005]
The calorimeter system

The calorimeter system: SPD, PS
The calorimeter system: ECAL, HCAL

ECAL
HCAL

Inner region
Outer region
Middle region
LHCb trigger

- **L0 trigger**
 - first level trigger of LHCb
 - 4μs latency at 40MHz
 - Apply selection cuts
 - $E_T(\gamma/e) > 2.7$ GeV
 - $E_T(h) > 3.6$ GeV
 - $P_T(\mu) > 1.4$ GeV

- **HLT : software trigger**
 - 300k tasks in parallel
 - More than 1500 nodes

- **Storage : 5kHz**

- **Combined efficiency**
 - 90% for muon channels
 - 30% for multi-hadronic final states
LHCb Integrated Luminosity

<table>
<thead>
<tr>
<th>Year</th>
<th>Energy (TeV)</th>
<th>Luminosity (fb⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>8</td>
<td>2.1</td>
</tr>
<tr>
<td>2011</td>
<td>7</td>
<td>1.1</td>
</tr>
<tr>
<td>2010</td>
<td>7</td>
<td>0.038</td>
</tr>
</tbody>
</table>

Semi-continuous (automatic) adjustment of offset of colliding beams allows luminosity to be *levelled*

Detectors all with >99% active channels

ε(operation)>94%

~98% are good data!

LHCb operation

4 times more collisions per crossing than in the design
Calorimeter system geometry

- 40MHz trigger on energetic e, π^0, γ, h
- Distance to IP $\sim 13m$
- Solid angle coverage $300 \times 250 \text{mrad}$
- Four sub-detectors:
 - SPD, PS, ECAL, HCAL
- Independently retractable halves
- Granularity:
 - SPD, PS, ECAL: 6016 cells with 3 sizes
 - 4x4, 6x6, 12x12 cm2 (2 zones for HCAL)
Calorimeter system

- 40MHz trigger on energetic e, π^0, γ, h
- Distance to IP ~13m
- Solid angle coverage 300x250mrad
- Four sub-detectors: SPD, PRS, ECAL, HCAL
- Independently retractable halfes
- Granularity :
 - PRS, ECAL, HCAL : 6016 cells with 3 sizes
 - 4x4, 6x6, 12x12 cm2
- Detection
 - Sandwich of scintillator/lead (iron for HCAL)
 - WLS are used to collect the light and to propagate it to photomultipliers
 - MAPMT for the SPD/PS
Scintillating Pad Detector - Preshower

- Scintillator pads
 - 2.5 X^0 lead
 - 15mm thick
 - Light collected by WLS
- Signal read by 64 channel MAPMT
- Average light yield
 - 20 pe/mip
- SPD
 - 1 bit
- PS
 - 10 bits
 - Dynamic range 0 - 100mip
ECAL

- Electromagnetic calorimeter
 - 66 layers
 - 2mm Pb, 4mm scintillator
 - Light collected by WLS
 - Moliere radius ~ 3.5cm
 - Longitudinal size
 - 25 X_0
 - 1.1 λ_l

- Average light yield:
 - 3000 pe/GeV

- Dynamic range ~12 GeV (Et)

- Energy resolution (test beam)
 \[
 \frac{\sigma(E)}{E} = 10\% \oplus 0.9\%
 \]
HCAL

- Hadronic calorimeter
 - 26x2 modules
 - Interleaved scintillator and iron plates
 - Parallel to the beam axis
 - Volume ratio
 - Fe:Sc = 5.58:1
 - Longitudinal size
 - 5.6 λ_I
 - Average light yield \sim 105pe/GeV
 - Dynamic range \sim15 / 30 GeV
 - Energy resolution (test beam)
 \[
 \frac{\sigma(E)}{E} = \frac{(69 \pm 5)\%}{\sqrt{E}} \oplus (0 \pm 2)\%
 \]
Calorimeter particle identification

- PS / SPD for L0 electron/photon trigger
 - Electron/photon separation from SPD
 - Photon/mip separation PS
 - Charge multiplicity given by the SPD

<table>
<thead>
<tr>
<th>SPD</th>
<th>PS</th>
<th>ECAL</th>
<th>HCAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- ECAL
 - Et of electrons, photons, π^0 for L0 trigger
 - Offline reconstruction of π^0 and photons
 - Particle identification

- HCAL
 - Et of hadrons for L0, ΣEt for L0 trigger
 (~ 500 MHz out of the 1MHz bandwidth of the L0)
Calibration : SPD

- SPD (LHCb-PUB-2011-24)
 - Threshold set at 0.5 mip
 - Binary detector
 - No straight mip calibration
 - Tracks are extrapolated to the SPD
 - Collect data at different thresholds
 - Get mip efficiency by comparing with theoretical value

\[\epsilon = \text{Landau} \times \text{Poisson} \]

Energy loss Fluctuations of the npe at the photocathode

Precision on the mip position better than 5%

~95% efficient for MIPs

SPD efficiency as a function of threshold

\[\epsilon = \frac{\# \text{of SPD hits}}{\# \text{tracks} \rightarrow \text{SPD}} \]
Preshower

- Mip signal set at ~10 ADC counts (~1mip)
 - Use extrapolation of the tracks to the PS
 - Mip signal is fitted (Landau ⊗ Gauss for statistical resolution) and fixed to a given number of photoelectrons
 - 5% precision level

\[
\begin{align*}
\mu &: 10.87 \pm 0.03 \\
\sigma &: 0.83 \pm 0.02 \\
\mu &: 10.41 \pm 0.03 \\
\sigma &: 0.90 \pm 0.02 \\
\mu &: 10.87 \pm 0.03 \\
\sigma &: 0.83 \pm 0.02
\end{align*}
\]
Calibration : ECAL

- Fine calibration using reconstructed π^0
 - Iterative procedure based on the π^0 mass fit
 - Find the calibration coeff that moves the π^0 mass close to the theoretical value
 - $\lambda = m_{th}/m_{rec}$ → one coefficient per cell (more than 6000 cells)
- \sim1% precision reached
 - 100 million events needed (200pb$^{-1}$, 1 month)

![Graph showing π^0 mass vs. N_{iter}](image1)

![Graph showing π^0 mass distribution](image2)

- π^0 selection cuts:
 - No SPD hit
 - Pt(γ)>300 MeV
 - E(PS)<10 MeV
 - pT (π^0)>800 MeV

Initial calibration value
Final calibration value
Calibration : ECAL

- ECAL calibration with electrons
 - Comparison of the electron momentum from the tracking with its energy measured in the ECAL and PS (electrons from conversions selected with RICH PID)
 - Also used to monitor the ageing and applying trend corrections every 40pb⁻¹
Calibration: HCAL

- **Cs137 source**
 - 1 source per half (10mCi)
 - Driven by an hydraulic system
 - Each source travels at 20-40cm/s through 26 modules
 - Dedicated integrators measure the anode current every 5ms
 - Absolute normalisation ~10%
 - Cell to cell calibration ~4%
 - Done during technical stops

- **LED system**
 - Control HCAL response
 - During data taking
Detector ageing

- Combination of several effects
 - Scintillator ageing due to radiations (~0.25Mrad/y)
 - Plastic tiles are less transparents
 - Proportional to the particle flux
 - PMT ageing as a function of the integrated current
 - Depends on cell size and position

\[
\pi^0 \text{ mass as a function of time (luminosity)}
\]
Towards an automatic calibration

- Plan is to have a fully automatic calibration for run 2
 - Based on LED and RAW occupancy

 - Promising method: reach 1% precision
 - Test on 2012 data sample for PS, ECAL and HCAL
 - Adjust PMT gain for each fill
 - Stable trigger

\[
\text{OCC} = \frac{\text{Nentries}(\text{adc}_\text{reading} > \text{threshold})}{\text{Nentries}}
\]
Electron identification

- Likelihood difference for the signal (electron) and background hypothesis
 - Based on data distributions
 - Signal: electrons from conversions
 - Backgrounds: hadrons from $D^0 \rightarrow K\pi$

- Mis-ID rate ~5% for electron eff 90%

- Combined Calo Delta Log – Likelihood
 - + RICH information:
 - Mis_ID rate <2%
 - for electron eff >97%

From $B^+ \rightarrow J/\psi K$
π⁰ reconstruction

- Low energy pions: resolved as a photon pair – $σ \sim 8$ MeV
- Above 2.5 GeV (Pt), reconstructed as merged photons

\[D^0 \rightarrow K^+ \pi^+ \pi^- (\text{resolved } \pi^0) \]
\[D^0 \rightarrow K^- \pi^- \pi^0 \text{ with resolved } \pi^0 \quad (\int L \, dt = 610 \, \text{pb}^{-1}) \]

\[\sigma = 17.4 \text{ MeV/c}^2 \]

\[D^0 \rightarrow K^+ \pi^- \pi^0 = 32.2 \text{ MeV/c}^2 \]

Resolved pair of well separated photons

Photons that cannot be resolved as a pair of clusters within ECAL granularity
Radiative b → s γ FCNC decay, penguin diagram:
- Important candidate to identify new physics at LHC (BR measurement)
- Asymmetry give a direct constraint on the CP violation
 - BR predictions suffer from high uncertainties (hadronic form factor)
 \[B^0 \rightarrow K^* \gamma = (4.3 \pm 1.4) \times 10^{-5} \]; \[B_s \rightarrow \phi \gamma = (4.3 \pm 1.4) \times 10^{-5} \]
 \[\rightarrow R(BR) = 1.23 \pm 0.06 \pm 0.04 \pm 0.10(fs/fd) \] [Th: 1.0±0.2]
- LHCb measures precisely ratio of BR and asymmetries
 - 1fb⁻¹ [NP B 867(2012)1]
 • \[N(B^0 \rightarrow K^*\gamma) = 5279 \pm 93 \]; \[N(B_s \rightarrow \phi\gamma) = 691 \pm 36 \] → \[BR(B_s \rightarrow \phi\gamma) = (3.5 \pm 0.4) \times 10^{-5} \]
 • \[A_{CP}(B^0 \rightarrow K^*\gamma) = (0.8 \pm 1.7 \pm 0.9)\% \] [Th: (-0.61±0.43)\%]
- World best measurement

Invariant mass resolution: ~92 MeV/c²
LHCb Upgrade

- The sub-detectors should be able to sustain $2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$ at 14 TeV
- Full software trigger
 - The calorimeter electronics will send data to a large PC farm @ 40MHz
 - Reduction of the gain of the PMT to keep them alive (compensated in the FEB)
- LHCb upgrade PID TDR: CERN/LHCC 2013-022
Conclusion

- The LHCb calorimeters are running smoothly
 - \(O(10^{-3}) \) dead channels
- Good performances
 - Key role on the trigger:
 - Hadrons, electrons, photons channels
 - Important measurements
 - \(b \to s\gamma \) decay type, \(\gamma \) polarisation
 - \(B^0 \to K^*\gamma, B_s \to \phi\gamma \)
 - \(\chi_c \) states production at LHC (\(\chi_c \to J/\psi\gamma \))
- Significant ageing effects (PMT, scintillator) → expected
 - Automation of PMT HV adjustment procedure
- Calorimeter part of the LHCb upgrade program (2019)
Thank You!
HCAL ageing effect

- Degradation of a significant number of HCAL PMT
 - ~ 15% (only affect the HCAL)

- Three types of problems:
 - Significant rate effect
 - up to +5 … +30 %
 - Dark current appears
 - Degradation of the gain

- The effects are correlated

- No correlation with the occupancy
Readout of the (MA)PMT

- 192 ECAL FEB
- 54 HCAL FEB
- 12-bit ADC
- 32 channels
- 100 PS/SPD FEB
- 10-bit ADC
- 64 channels

Detector

VFE-boxes

FE-crates

ECAL

HCAL

PM

PM

clip

clip

Analog 10 m

same electronics

40 MHz

Trigger: Validation Card (TVB)

Readout: CROC

1 MHz

1 MHz

32 channels

40 MHz

Optical link Selection Crate (L0 decision)

40 MHz

Optical link

Control Board (CB)

Control and TFC distribution

SPD Multiplicity

FE card (LPC-CfD)

Pipeline

Marathon PS

SPD

VFE

PreShower

Optical fibres

MAPMT

Optical fibres

MAPMT

Analogue

LVDS- 2.5 Gb/s

Digital

02/06/2014

Tuesday July 1st, 2014

Frédéric Machefert - NDIP 2014 - Tours
ECAL ageing

- After calibration (preliminary, 2011 data):

- April, May, June, July, August
HCAL ageing

- 137Cs source
 - Allow to separate the light yield degradation from the PMT gain loss
 - Radiation damage of tiles and fibers

The hadronic shower maximum lays ~ within the tile row 0; the dose in the row 5 is much less. Radiation damage of scintillator tiles and fibers can therefore manifest itself as a decrease of relative response of upstream rows (0, 1) with respect to row 5.