

STUDIES OF MPPC DETECTORS DOWN TO CRYOGENIC TEMPERATURES

<u>Andrii Nagai</u>¹, Nicoleta Dinu¹, Adam Para²

1 Laboratory of Linear Accelerator, Orsay France 2 Fermi National Accelerator Laboratory, Illinois, USA

Outline

- Introduction:
 - \checkmark The motivation of the present work
- Experimental details
- Main steps of automatic procedure for data analysis:
 - ✓ Baseline restoration
 - ✓ Templates
 - ✓ Peak analysis
- Physics results:
 - ✓ Charge distribution
 - ✓ Gain and Breakdown Voltage
 - ✓ Micro-cell resistance and capacitance
 - ✓ Recovery time
 - ✓ Dark Count Rate
- Summary

MPPC characteristics:

Gain : -> the number of charges created in one avalanche in one µcell

Noise : dark count afterpulse optical cross-talk

pulses triggered by non-photo-generated carriers (thermal/tunneling generation in the bulk or in the surface depleted region around the junction)

carriers can be trapped during an avalanche and then released triggering another avalanche

photo-generation during the avalanche discharge. Some of the photons can be absorbed in the adjacent cell possibly triggering new discharges

Signal shape : $\begin{cases} \text{Rise time} : \tau_{rise} \sim R_{D} \cdot C_{D} \text{ (read-out chain should be taken into account)} \\ \text{Recovery time} : \tau_{recovery} \sim R_{q} \cdot C_{D} \text{ (influence the dead time and dynamic range)} \end{cases}$

Photon Detection Efficiency, Dynamic Range, Timing resolution

Motivation:

- The temperature and bias voltage represent two parameters affecting the characteristics of the MPPC detectors (breakdown voltage, signal shape, noise, gain etc) and consequently leading to a variation of the final detection characteristics
- Use the properties of MPPC for the understanding of fundamental physics: temperature dependence of thermal generated carriers; life time of afterpulses etc.

Fermilab set-up for low temperature measurements:

- T range: from -175°C to 55°C in step of 10°C (24 T values)
- At each T:
 - 12 $V_{_{bias}}$ values for each detector (the same overvoltage independent of T)

MPPC detectors:

Hamamatsu S10362-11-050U

1x1mm² total area 50x50μm² μcell

Hamamatsu S10931-050P

3x3mm² total area 50x50µm² µcell

Read out chain:

Read-out chain used for data acquisition

differentiates the signal with the time constant τ

it leads to baseline shift:

- Pulses are siting on shifted baseline
- Pulses shapes are modified (Amplitude, Charge)

Baseline restoration:

Automatic procedure:

To analyze experimental data:

- Separate real MPPC pulses from noise
- Calculate MPPC pulse characteristics
- Select single MPPC pulses
- Calculate MPPC detector characteristics

Our aim:

To compare the template with all pulses and choose for the analysis only the pulses

having the same shape as the template (real MPPC shape)

Template: – is the typical MPPC signal

shape at a given Temperature

MPPC pulse analysis :

Gain : -the number of charges created one avalanche in one µcell

$$Gain = \frac{Q_{cell}}{e} = \frac{C_{cell} \times (V_{bias} - V_{BD})}{e} = \frac{C_{cell} \times \Delta V}{e}$$

Breakdown voltage : intercept of x axis

 $C_{\mu cell}$: the slope of linear fit

Charge, Voltage : 65.40 V. Temperature: -45^oC Entries 005 350 1 pixel fired 300 250 200 150 2 pixel fired 100 3 pixel fired 50 ×10⁻¹² 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 Charge, C

The MPPC charge was determined from Gaussian fit of 1 pixel fired peak

01/07/2014

Andrii Nagai, LAL

Breakdown voltage :

Detectors show different temperature dependence

different structural or technological characteristics (C.R.Crowell and S.M.Sze "Temperature dependence of avalanche multiplication in semiconductors", Appl. Phys. Letters 9, 6(1966))

Gain vs Overvoltage:

Signal shapes vs Temperature: Hamamatsu_MPPC_S10362-11-050U

Pulse falling edge ($5\tau_{fall} = C_{\mu cell} \cdot R_{q}$) increase with decreasing $T \rightarrow R_{q}$ temperature dependence

R_q vs Temperature:

*R*_q increase with decreasing *T*

poly-silicon T dependence

Dark count rate vs Temperature:

Andrii Nagai, LAL

Summary

- MPPC detectors of 1x1 and 3x3 mm² 50x50µm cell size
 - T range -175°C to +55°C
 - Overvoltage range: 0.5 to 2.5V.
- Automatic procedure for the analysis of the MPPC temperature dependence
 - Baseline restoration
 - Pulse analysis
- **Physics analysis:** T dependence of MPPC parameters:
 - breakdown voltage
 - gain
 - dark count rate
 - quenching resistance
 - micro-cell capacitance
 - recovery time
- Future work: use this procedure for the understanding of MPPC

Additional Slides

Baseline restor Mean Laser Pulse, V_{Bias} : 66 [V]

Breakdown voltage :

"Temperature dependence of avalanche multiplication in semiconductors", Appl. Phys. Letters 9, 6(1966)