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Photo Sensors Replacement for the CMS HCAL 

for Phase I upgrade from HPD to SiPM
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The CMS detector
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HCAL is a scintillator sampling calorimeter inside the 4 Tesla field
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HB wedge loaded in to Cradle
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Full HB 
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HCAL Longitudinal View
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Photo detectors and readout electronics
Dose: HE = 9E10 n/cm2 , HB = 6.5E11 n/cm2
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OutLine
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• Our experience with HPD in the CMS 
detector                                                   
- Magnetic field operation                                    
- Long term stability data   

• SiPM R&D done with 3 main vendors for 
replacement
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CMS HCAL baseline HPD
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- Electrons get accelerated over 3.5 mm gap and absorbed 
by PIN diode
- Gain = HV-Threshold divided by 3.6 eV (electron hole 
pair)
- Diode is segmented into honey cone 19 pixel 
configuration
- Fiber optic window used instead of thick glass 

!

HPD was only “real” PD choice in 2000, we use DEP (now Photonis ) 

CUSTUM !!
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First magnetic field operation in CMS
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HPD current vs Magnetic field
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3 Selected HPDs tested in the Tesla lab 
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Research in the 1980s on high voltage applications in vacuum

THE INFLUENCE OF MAGNETIC FIELDS ON DIELECTRIC SURFACE

FLASHOVER

H Krompholz R Korzekwa M Lehr M KristiansenH. Krompholz, R. Korzekwa, M. Lehr, M. Kristiansen

Pulsed Power Laboratory

Department of Electrical Engineering

Texas Tech University

Lubbock, TX 79409-4432

ABSTRACT

The influence of low amplitude magnetic fields, in a

variety of configurations, on pulsed dielectric surface

flashover has been investigated. These variations includeg

dc magnetic fields; pulsed magnetic fields simulating

conditions for magnetic self insulation; and different

environments (vacuum, ambient gas, plasma), geometries,

dielectric materials, and orientations of the magnetic

field For field amplitudes of 0 3 T typically a doublingfield. For field amplitudes of 0.3 T, typically a doubling

of the flashover voltage is observed, if the ExB

drift is away from the surface. For flashover in vacuum,

it is sufficient to place permanent magnets in the cathode

vicinity to increase the flashover voltage. The

b ti i t t ith th " t t d fobservations are consistent with the "saturated surface

secondary avalanche model" and electron induced gas

desorption. The pulse shape of light emission during the

prebreakdown phase depends on the orientation and amplitude

of the magnetic field and shows that electron trajectoriesg j

above the surface are altered by magnetic

fields.
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Investigation and Literature scan 
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Correlation between discharge (measured in HV current 

through the side-walls) of HPD and Large noise pulsesthrough the side-walls) of HPD and Large noise pulses

(Pulse in the HV current is first) (negative so it is opposite from photo current)
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Correlation of HV current and noise pulse
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During installation 2007-2008
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HPD Selection was done vs magnetic field to optimize HB and HE operation

- HB and HE (at 3.8 Tesla)
288 HPDs x 18 channels installed
very small trigger increase vs ON/OFF magnetic field
During ramp up and down HPDs are turned OFF with interlock

- HO (in Fringe field of ~0.3 Tesla)
96 HPDs x 18 channels
More noise due to additional angle but HO is not in the trigger
YB2 with highest field 
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Long term stability data
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~2 year Standard LED runs with B=3.8T

!

Questions:

- Muon correlation
- RMS of LED spectra
- Vacuum stability

HB & HE, towers Ratio in time
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Muon data
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Correlation for all HB towers
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Muon data ratio vs LED ratio correlation FIT
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LED standard runs for selected towers
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!
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“Low” LED run results
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!

Ion feedback tail
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“Low LED” Ion feedback simulation 
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!

We measured ion feed back probability tube to tube in 2006 and 
found spread between 10-4 to 10-3. 
Using the ionization cross section we found 10-4 correspond to ~10-6 bar

!

data
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“Low” LED Mean/RMS
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!

Conclusion:
We found no evidence that feedback is increasing in HB HPDs ! 
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Gauss fit on “low” LED spectra

20

!

#PE= (1/sigma)2 = 93

gain = Mu / PE = 0.29 fC/p.e

#PE= (1/sigma)2 = 152

gain = Mu / PE = 0.29 fC/p.e
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HB low LED gauss fits
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! !

Good Correlation was found
with real increase in PE from Photocathode 

Increase in #PE No change in GAIN
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Speculations.........
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Do we have Photo-Cathode deformation due to strong electric field inside 
HPD ??             E= 7kV/3.5mm

~2 weeks of 13 kV
(7-8 KV = normal operation) 

We have seen strange effect running HPD at
Very HV for periods of time. Increase of QE in spots of HPD...

We know that QE is a function of Electric field specially for high red 
sensitive Photocathodes. 
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HPD change to SIPM
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HO SIPMs were bought in 2010 and 
installed this year 2160 (channels)

50 micron 3x3 mm HPK SiPM SMD package

Hamamatsu MPPC Old HPD 
Performance

SiPM vs HPD MIP performance 

After cosmic run of all 2160 channels HO is now considered in muon trigger 
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HPD to SiPM cont.
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HCAL Barrel and Endcap need large Linear range (MIP to TeV Jets)

- R&D between 2010-2014 on small cell devices with different companies 
We worked mainly with Zecotek, FBK, KETEK and HPK

- There is significant scintillator damage measure in HE measure 
scintillators during the first 22 fb-1 of operation

So the main goal is Better S/N  and depth segmentation

SiPM installation in HE is next we push for 2016-2017

HCAL Barrel is schedule for 2018
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Additional advances in PDE in 2012 R&D 
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Huge improvement with HPK new 
R&D SiPM with transparent Metal 
Film Quenching Resistor to create 
maximum Geometric factor

2011 2012 New 2014

Tuesday, July 1, 2014



7/1/2014 A.H Heering, University of Notre Dame

2013 KETEK 15 micron high PDE
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Candidate SiPM R&D results for replacement of HPDs 
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FBK 12 micron pitch large dynamic range SiPMs with large PDE and small ENC for the CMS HCAL Upgrade 
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HE SiPM depth segmented readout

28

We Took  data in our TEST BEAM area (FULL WEDGDE) with
5 Depth segmentations of L0, L(1+2), L(3,4,5),L(6,7,8),L(9-16)

Package is developed with
Kyocera
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TB2012 HE HPK 150 GeV muon
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Energy scan 3 manufactures (15 mc cells)
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- Pions in a 3x3x5 shows Good linear behavior 
- Energy resolution is NOT dominated by SiPM or HPD 
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SiPM dark current vs Cooling
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Noise of SiPM +QIE11 vs HPD +QIE 8
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HPD

SiPM 5C

SiPM 20C

Photo detector noise INCREASE with radiation

For 17% PDE

 sum 5 depths SiPM

Data from Test Beam and radiation test combined
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Conclusion
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Even after some initial trouble with NO dead channels we reported
In HPD readout 

CMS HCAL has taken good data in the first 4 years (Phase 0)
of LHC

First part of HCAL has exchanged HPDs for SIPMs (CMS- HO)
successfully.  We are hopping to get the real physics first data for this next year

Getting ready for SLHC (Phase 1) we will exchange first ENDCAP to compensate as 
much as possible for scintillator damage 

We still have many years for SiPM improvement for Phase 2 replacements

Solid State Photodetectors are a great advancement in HEP 
R&D should continue !!
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